Синусоидальные колебания. Гармонические колебания. Основы теории Максвелла для электромагнитного поля

На хабре было несколько статей по преобразованию Фурье и о всяких красивостях типа Цифровой Обработки Сигналов (ЦОС), но неискушённому пользователю совершенно не понятно, зачем всё это нужно и где, а главное как это применить.

АЧХ шума.

Лично мне после прочтения этих статей (например, этой) не стало понятно, что это и зачем оно нужно в реальной жизни, хотя было интересно и красиво.
Хочется не просто поглядеть красивые картинки, а так сказать, ощутить нутром, что и как работает. И я приведу конкретный пример с генерацией и обработкой звуковых файлов. Можно будет и послушать звук, и поглядеть его спектр, и понять, почему это так.
Статья не будет интересна тем, кто владеет теорией функций комплексной переменной, ЦОС и прочими страшными темами. Она скорее для любопытствующих, школьников, студентов и им сочувствующих:).

Сразу оговорюсь, я не математик, и многие вещи могу даже сказать неправильно (поправляйте личным сообщением), и данную статью пишу, опираясь на собственный опыт и собственное понимание текущих процессов. Если вы готовы, то поехали.

Пару слов о матчасти

Если мы вспомним школьный курс математики, то для построения графика синуса мы использовали круг. В общем-то так и получается, что вращательное движение можно превратить в синусоиду (как и любое гармоническое колебание). Самое лучшая иллюстрация этого процесса приведена в википедии


Гармонические колебания

Т.е. фактически график синуса получается из вращения вектора, который описывается формулой:

F(x) = A sin (ωt + φ),

Где A - длина вектора (амплитуда колебаний), φ - начальный угол (фаза) вектора в нулевой момент времени, ω - угловая скорость вращения, которая равна:

ω=2 πf, где f - частота в Герцах.

Как мы видим, что зная частоту сигнала, амплитуду и угол, мы можем построить гармонический сигнал.

Магия начинается тогда, когда оказывается, что представление абсолютно любого сигнала можно представить в виде суммы (зачастую бесконечной) различных синусоид. Иначе говоря, в виде ряда Фурье.
Я приведу пример из английской википедии . Для примера возьмём пилообразный сигнал.


Пилообразный сигнал

Его сумма будет представлена следующей формулой:

Если мы будем по очерёдно суммировать, брать сначала n=1, затем n=2 и т.д., то увидим, как у нас гармонический синусоидальный сигнал постепенно превращается в пилу:

Наверное красивее всего это иллюстрирует одна программа, найденная мной на просторах сети. Выше уже говорилось, что график синуса является проекцией вращающегося вектора, а как же быть в случае более сложных сигналов? Это, как ни странно, проекция множества вращающихся векторов, а точнее их суммы, и выглядит это всё так:


Вектора рисуют пилу.

Вообще рекомендую сходить самим по ссылке и попробовать самим поиграться с параметрами, и посмотреть как меняется сигнал. ИМХО более наглядной игрушки для понимания я ещё не встречал.

Ещё следует заметить, что есть обратная процедура, позволяющая получить из данного сигнала частоту, амплитуду и начальную фазу (угол), которое называется Преобразование Фурье.


Разложение в ряд Фурье некоторых известных периодических функций (отсюда)

Я детально на нём останавливаться не буду, но покажу, как это можно применить по жизни. В списке литературы порекомендую то, где можно почитать подробнее о матчасти.

Переходим к практическим упражнениям!

Мне кажется, что каждый студент задаётся вопросом, сидя на лекции, например по матану: зачем мне весь этот бред? И как правило, не найдя ответа в обозримом будущем, к сожалению, теряет интерес к предмету. Поэтому я сразу покажу практическое применение данных знаний, а вы эти знания уже будете осваивать сами:).

Всё дальнейшее я буду реализовывать на сях. Делал всё, конечно, под Linux, но никакой специфики не использовал, по идее программа будет компилироваться и работать под другими платформами.

Для начала напишем программу для формирования звукового файла. Был взят wav-файл, как самый простой. Прочитать про его структуру можно .
Если кратко, то структура wav-файла описывается так: заголовок, который описывает формат файла, и далее идёт (в нашем случае) массив 16-ти битных данных (остроконечник) длиной: частота_дискретизации*t секунд или 44100*t штук.

Для формирования звукового файла был взят пример . Я его немного модифицировал, исправил ошибки, и окончательная версия с моими правками теперь лежит на гитхабе тут

Сгенерируем двухсекундный звуковой файл с чистым синусом частотой 100 Гц. Для этого модифицируем программу таким образом:

#define S_RATE (44100) //частота дискретизации #define BUF_SIZE (S_RATE*10) /* 2 second buffer */ …. int main(int argc, char * argv) { ... float amplitude = 32000; //берём максимальную возможную амплитуду float freq_Hz = 100; //частота сигнала /* fill buffer with a sine wave */ for (i=0; i

Обращаю внимание, что формула чистого синуса соответствует той, о которой мы говорили выше. Амплитуда 32000 (можно было взять 32767) соответствует значению, которое может принимать 16-ти битное число (от минус 32767 до плюс 32767).

В результате получаем следующий файл (можно его даже послушать любой звуковоспроизводящей программой). Откроем данный файл audacity и увидим, что график сигнала в действительности соответствует чистому синусу:


Чистый ламповый синус

Поглядим спектр этого синуса (Анализ->Построить график спектра)


График спектра

Виден чистый пик на 100 Гц (логарифмический масштаб). Что такое спектр? Это амплитудно-частотная характеристика. Существует ещё фазочастотная характеристика. Если помните, выше я говорил, что для построения сигнала надо знать его частоту, амплитуду и фазу? Так вот, можно из сигнала получить эти параметры. В данном случае у нас график соответствий частот амплитуде, при чём амплитуда у нас не в реальных единицах, а в Децибелах.

Я понимаю, что чтобы объяснить, как работает программа, надо объяснить, что такое быстрое преобразование Фурье, а это как минимум ещё на одну некислую статью.

Для начала алокируем массивы:

C = calloc(size_array*2, sizeof(float)); // массив поворотных множителей in = calloc(size_array*2, sizeof(float)); //входный массив out = calloc(size_array*2, sizeof(float)); //выходной массив

Скажу лишь, что в программе мы читаем данные в массив длиной size_array (которое берём из заголовка wav-файла).

While(fread(&value,sizeof(value),1,wav)) { in[j]=(float)value; j+=2; if (j > 2*size_array) break; }

Массив для быстрого преобразования Фурье должен представлять собой последовательность {re, im, re, im,… re, im}, где fft_size=1<< p - число точек БПФ. Объясняю нормальным языком:
это массив комплексных чисел. Я даже боюсь представить, где используется комплексное преобразование Фурье, но в нашем случае мнимая часть у нас равна нулю, а действительная равна значению каждой точке масива.
Ещё одна особенность именно быстрого преобразования Фурье, что оно обсчитывает массивы, кратные только степени двойки. В результате мы должны вычислить минимальную степень двойки:

Int p2=(int)(log2(header.bytes_in_data/header.bytes_by_capture));

Логарифм от количество байт в данных, делённых на количество байт в одной точке.

После этого считаем поворотные множители:

Fft_make(p2,c);// функция расчёта поворотных множителей для БПФ (первый параметр степень двойки, второй алокированный массив поворотных множителей).

И скармливаем наш считанный массив в преобразователь Фурье:

Fft_calc(p2, c, in, out, 1); //(единица означает, что мы получаем нормализованный массив).

На выходе мы получаем комплексные числа вида {re, im, re, im,… re, im}. Для тех, кто не знает, что такое комплексное число, поясню. Я не зря начал эту статью с кучи вращающихся векторов и кучи гифок. Так вот, вектор на комплесной плоскости определяется действительной координатой a1 и мнимой координатой a2. Или длиной (это у нас амплитуда Am) и углом Пси (фаза).


Вектор на комплексной плоскости

Обратите внимание, что size_array=2^p2. Первая точка массива соответствует частоте 0 Гц (постоянная), последняя точка соответствует частоте дискретизации, а именно 44100 Гц. В результате мы должны рассчитать частоту, соответствующей каждой точке, которые будут отличаться на частоту дельта:

Double delta=((float)header.frequency)/(float)size_array; //частота дискретизации на размер массива.

Алокируем массив амплитуд:

Double * ampl; ampl = calloc(size_array*2, sizeof(double));

И смотрим на картинку: амплитуда - это длина вектора. А у нас есть его проекции на действительную и мнимую ось. В результате у нас будет прямоугольный треугольник, и тут мы вспоминаем теорему Пифагора, и считаем длину каждого вектора, и сразу пишем её в текстовый файл:

For(i=0;i<(size_array);i+=2) { fprintf(logfile,"%.6f %f\n",cur_freq, (sqrt(out[i]*out[i]+out*out))); cur_freq+=delta; }
В результате получаем файл примерно такого вида:

… 11.439514 10.943008 11.607742 56.649738 11.775970 15.652428 11.944199 21.872342 12.112427 30.635371 12.280655 30.329171 12.448883 11.932371 12.617111 20.777617 ...

Пробуем!

Теперь скармливаем получившейся программе тот звуковой файл синуса

./fft_an ../generate_wav/sin\ 100\ Hz.wav format: 16 bits, PCM uncompressed, channel 1, freq 44100, 88200 bytes per sec, 2 bytes by capture, 2 bits per sample, 882000 bytes in data chunk=441000 log2=18 size array=262144 wav format Max Freq = 99.928 , amp =7216.136

И получаем текстовый файл АЧХ. Строим его график с помощью гнуплота

Скрипт для построения:

#! /usr/bin/gnuplot -persist set terminal postscript eps enhanced color solid set output "result.ps" #set terminal png size 800, 600 #set output "result.png" set grid xtics ytics set log xy set xlabel "Freq, Hz" set ylabel "Amp, dB" set xrange #set yrange plot "test.txt" using 1:2 title "AFC" with lines linestyle 1

Обратите внимание на ограничение в скрипте на количество точек по X: set xrange . Частота дискретизации у нас 44100, а если вспомнить теорему Котельникова, то частота сигнала не может быть выше половины частоты дискретизации, следовательно сигнал выше 22050 Гц нас не интересует. Почему так, советую прочитать в специальной литературе.
Итак (барабанная дробь), запускаем скрипт и лицезреем:


Спектр нашего сигнала

Обратите внимание на резкий пик на частоте 100 Гц. Не забывайте, что по осям - логарифмический масштаб! Шерсть справа, как я думаю, ошибки преобразования Фурье (тут на память приходят окна).

А давайте побалуем?

А давайте! Давайте поглядим спектры других сигналов!

Вокруг шум…
Для начала построим спектр шума. Тема про шумы, случайные сигналы и т.п. достойна отдельного курса. Но мы её коснёмся слегка. Модифицируем нашу программу генерации wav-файла, добавим одну процедуру:

Double d_random(double min, double max) { return min + (max - min) / RAND_MAX * rand(); }

Она будет генерировать случайное число в заданном диапазоне. В результате main будет выглядеть так:

Int main(int argc, char * argv) { int i; float amplitude = 32000; srand((unsigned int)time(0)); //инициализируем генератор случайных чисел for (i=0; i

Сгенерируем файл , (рекомендую к прослушиванию). Поглядим его в audacity.


Сигнал в audacity

Поглядим спектр в программе audacity.


Спектр

И поглядим спектр с помощью нашей программы:


Наш спектр

Хочу обратить внимание на очень интересный факт и особенность шума - он содержит в себе спектры всех гармоник. Как видно из графика, спектр вполне себе ровный. Как правило, белый шум используется для частотного анализа пропускной способности, например, аудиоаппаратуры. Существуют и другие виды шумов: розовый, синий и другие . Домашнее задание - узнать, чем они отличаются.

А компот?

А теперь давайте посмотрим другой интереснейший сигнал - меандр. Я там выше приводил табличку разложений различных сигналов в ряды Фурье, вы поглядите как раскладывается меандр, выпишите на бумажку, и мы продолжим.

Для генерации меандра с частотой 25 Гц мы модифицируем в очередной раз наш генератор wav-файла:

Int main(int argc, char * argv) { int i; short int meandr_value=32767; /* fill buffer with a sine wave */ for (i=0; i

В результате получим звуковой файл (опять же, советую послушать), который сразу надо посмотреть в audacity


Его величество - меандр или меандр здорового человека

Не будем томиться и поглядим его спектр:


Спектр меандра

Пока не очень что-то понятно, что такое… А давайте поглядим несколько первых гармоник:


Первые гармоники

Совсем другое дело! Ну-ка поглядим табличку. Смотрите-ка, у нас есть только 1, 3, 5 и т.д., т.е. нечётные гармоники. Мы так и видим, что у нас первая гармоника 25 Гц, следующая (третья) 75 Гц, затем 125 Гц и т.д., при этом у нас амплитуда постепенно уменьшается. Теория сошлась с практикой!
А теперь внимание! В реальной жизни сигнал меандра у нас имеет бесконечную сумму гармоник всё более и более высокой частоты, но как правило, реальные электрические цепи не могут пропускать частоты выше какой-то частоты (в силу индуктивности и ёмкости дорожек). В результате на экране осциллографа можно часто увидеть вот такой сигнал:


Меандр курильщика

Эта картинка прям как картинка из википедии , где для примера меандра берутся не все частоты, а только первые несколько.

Сумма первых гармоник, и как меняется сигнал

Меандр так же активно используется в радиотехнике (надо сказать, что - это основа всей цифровой техники), и стоит понимать что при длинных цепях его может отфильтровать так, что, родная мама не узнает. Его так же используют для проверки АЧХ различных приборов. Ещё интересный факт, что глушилки телевизоров работали именно по принципу высших гармоник, когда сама микросхема генерировала меандр десятки МГц, а его высшие гармоники могли иметь частоты сотни МГц, как раз на частоте работы телевизора, и высшие гармоники успешно глушили сигнал вещания телевизора.

Вообще тема подобных экспериментов бесконечная, и вы можете теперь сами её продолжить.


Книга

Для тех, кто нифига не понял, что мы тут делаем, или наоборот, для тех, кто понял, но хочет разобраться ещё лучше, а так же для студентам, изучающим ЦОС, крайне рекомендую эту книгу. Это ЦОС для чайников, которым является автор данного поста. Там доступным даже для ребёнка языком рассказываются сложнейшие понятия.

Заключение

В заключении хочу сказать, что математика - царица наук, но без реального применения многие люди теряют к ней интерес. Надеюсь, данный пост подстегнёт вас к изучению такого замечательного предмета, как обработка сигналов, и вообще аналоговой схемотехнике (затыкайте уши, чтобы не вытекали мозги!). :)
Удачи!


Уравнение гармонического колебания

Уравнение гармонического колебания устанавливает зависимость координаты тела от времени

График косинуса в начальный момент имеет максимальное значение, а график синуса имеет в начальный момент нулевое значение. Если колебание начинаем исследовать из положения равновесия, то колебание будет повторять синусоиду. Если колебание начинаем рассматривать из положения максимального отклонения, то колебание опишет косинус. Или такое колебание можно описать формулой синуса с начальной фазой .

Изменение скорости и ускорения при гармоническом колебании

Не только координата тела изменяется со временем по закону синуса или косинуса. Но и такие величины, как сила , скорость и ускорение , тоже изменяются аналогично. Сила и ускорение максимальные, когда колеблющееся тело находится в крайних положениях, где смещение максимально, и равны нулю, когда тело проходит через положение равновесия. Скорость, наоборот, в крайних положениях равна нулю, а при прохождении телом положения равновесия - достигает максимального значения.

Если колебание описывать по закону косинуса

Если колебание описывать по закону синуса

Максимальные значения скорости и ускорения

Проанализировав уравнения зависимости v(t) и a(t), можно догадаться, что максимальные значения скорость и ускорение принимают в том случае, когда тригонометрический множитель равен 1 или -1. Определяются по формуле

Меняется во времени по синусоидальному закону:

где х — значение колеблющейся величины в момент времени t , А — амплитуда , ω — круговая частота, φ — начальная фаза колебаний, (φt + φ ) — полная фаза колебаний . При этом величины А , ω и φ — постоянные.

Для механических колебаний колеблющейся величиной х являются, в частности, смещение и скорость , для электрических колебаний — напряжение и сила тока .

Гармонические колебания занимают особое место среди всех видов колебаний, т. к. это единственный тип колебаний, форма которых не искажается при прохождении через любую однородную среду, т. е. волны, распространяющиеся от источника гармонических колебаний, также будут гармоническими. Любое негармоническое колебание может быть представлено в виде сумм (интеграла) различных гармонических колебаний (в виде спектра гармонических колебаний).

Превращения энергии при гармонических колебаниях.

В процессе колебаний происходит переход потенциальной энергии W p в кинетическую W k и наоборот. В положении максимального отклонения от положения равновесия потенциальная энергия максимальна, кинетическая равна нулю. По мере возвращения к положению равновесия скорость колеблющегося тела растет, а вместе с ней растет и кинетическая энергия, достигая максимума в положении равновесия. Потенциальная энергия при этом падает до нуля. Дальней-шее движение происходит с уменьшением скорости, которая падает до нуля, когда отклонение достигает своего второго максимума. Потенциальная энергия здесь увеличивается до своего перво-начального (максимального) значения (при отсутствии трения). Таким образом, колебания кинетической и потенциальной энергий происходят с удвоенной (по сравнению с колебаниями самого маятника) частотой и находятся в противофазе (т. е. между ними существует сдвиг фаз, равный π ). Полная энергия колебаний W остается неизменной. Для тела, колеблющегося под действием силы упругости , она равна:

где v m — максимальная скорость тела (в положении равновесия), х m = А — амплитуда.

Из-за наличия трения и сопротивления среды свободные колебания затухают: их энергия и амплитуда с течением времени уменьшаются. Поэтому на практике чаще используют не свободные, а вынужденные колебания.

Простейшим видом колебаний являются гармонические колебания - колебания, при которых смещение колеблющейся точки от положения равновесия изменяется с течением времени по закону синуса или косинуса.

Так, при равномерном вращении шарика по окружности его проекция (тень в параллельных лучах света) совершает на вертикальном экране (рис. 1) гармоническое колебательное движение.

Смещение от положения равновесия при гармонических колебаниях описывается уравнением (его называют кинематическим законом гармонического движения) вида:

где х - смешение - величина, характеризующая положение колеблющейся точки в момент времени t относительно положения равновесия и измеряемая расстоянием от положения равновесия до положения точки в заданный момент времени; А - амплитуда колебаний - максимальное смещение тела из положения равновесия; Т - период колебаний - время совершения одного полного колебания; т.е. наименьший промежуток времени, по истечении которого повторяются значения физических величин, характеризующих колебание; - начальная фаза;

Фаза колебании в момент времени t. Фаза колебаний - это аргумент периодической функции, который при заданной амплитуде колебаний определяет состояние колебательной системы (смещение, скорость, ускорение) тела в любой момент времени.

Если в начальный момент времени колеблющаяся точка максимально смещена от положения равновесия, то , а смещение точки от положения равновесия изменяется по закону

Если колеблющаяся точка при находится в положении устойчивого равновесия, то смещение точки от положения равновесия изменяется по закону

Величину V, обратную периоду и равную числу полных колебаний, совершаемых за 1 с, называют частотой колебаний:

Если за время t тело совершает N полных колебаний, то

Величину , показывающую, сколько колебаний совершает тело за с, называют циклической (круговой) частотой .

Кинематический закон гармонического движения можно записать в виде:

Графически зависимость смещения колеблющейся точки от времени изображается косинусоидой (или синусоидой).

На рисунке 2, а представлен график зависимости от времени смещения колеблющейся точки от положения равновесия для случая .

Выясним, как изменяется скорость колеблющейся точки со временем. Для этого найдем производную по времени от этого выражения:

где - амплитуда проекции скорости на ось х.

Эта формула показывает, что при гармонических колебаниях проекция скорости тела на ось х изменяется тоже по гармоническому закону с той же частотой, с другой амплитудой и опережает по фазе смешение на (рис. 2, б).

Для выяснения зависимости ускорения найдем производную по времени от проекции скорости:

где - амплитуда проекции ускорения на ось х.

При гармонических колебаниях проекция ускорения опережает смещение по фазе на к (рис. 2, в).

Аналогично можно построить графики зависимостей

Учитывая, что , формулу для ускорения можно записать

т.е. при гармонических колебаниях проекция ускорения прямо пропорциональна смещению и противоположна ему по знаку, т.е. ускорение направлено в сторону, противоположную смещению.

Так, проекция ускорения - это вторая производная от смещения , то полученное соотношение можно записать в виде:

Последнее равенство называют уравнением гармонических колебаний .

Физическую систему, в которой могут существовать гармонические колебания, называют гармоническим осциллятором , а уравнение гармонических колебаний - уравнением гармонического осциллятора .

2. Момент инерции и его вычисление

Согласно определению, момент инерции тела относительно оси равен сумме произведений масс частиц на квадраты их расстояний до оси вращения или

Однако, эта формула непригодна для вычисления момента инерции; так как масса твердого тела распределена непрерывно, то сумму следует заменить на интеграл. Поэтому для вычисления момента инерции тело разбивают на бесконечно малые объемы dV с массой dm=dV. Тогда

где R - расстояние элемента dV от оси вращения.

Если момент инерции I C относительно оси, проходящей через центр масс, известен, то можно легко вычислить момент инерции относительно любой параллельной оси О, проходящей на расстоянии d от центра масс или

I O =I C +md 2 ,

Это соотношение называется теоремой Штейнера : момент инерции тела относительно произвольной оси равен сумме момента инерции относительно оси параллельной ей и проходящей через центр масс и произведения массы тела на квадрат расстояния между осями.

3. Кинетическая энергия вращения

Кинетическая энергия вращающегося вокруг закрепленной оси твердого тела

Дифференцируя формулу по времени, получим закон изменения кинетической энергии вращающегося вокруг закрепленной оси твердого тела:

скорость изменения кинетической энергии вращательного движения равна мощности момента силы.

dK вращ =M Z  Z dt=M Z d  K  K 2 -K 1 =

т.е. изменение кинетической энергии вращения равно работе момента сил .

4. Плоское движение

Движение твердого тела, при котором центр масс перемещается в фиксированной плоскости, а ось его вращения, проходящая через центр масс, остается перпендикулярной к этой плоскости, называется плоским движением . Это движение можно свести к совокупности поступательного движения и вращения вокруг неподвижной (закрепленной) оси , так как в Ц-системе ось вращения, действительно, остается неподвижной. Поэтому плоское движение описывается упрощенной системой двух уравнений движения:

Кинетическая энергия тела, совершающего плоское движение, будет:

и окончательно

,

так как в данном случае  i " - скорость вращения i-ой точки вокруг неподвижной оси.

Колебания

1. Гармонический осциллятор

Колебаниями вообще называются движения, повторяющиеся во времени.

Если эти повторения следуют через равные промежутки времени, т.е. x(t+T)=x(t), то колебания называются периодическими . Система, совершающая

колебания, называется осциллятором . Колебания, которые совершает система, предоставленная самой себе, называются собственными, а частота колебаний в этом случае -- собственной частотой .

Гармоническими колебаниями называются колебания, происходящие по закону sin или cos. Например,

x(t)=A cos(t+ 0),

где x(t) -- смещение частицы от положения равновесия, A -- максимальное

смещение или амплитуда , t+ 0 -- фаза колебаний,  0 -- начальная фаза (при t=0), -- циклическая частота , -- просто частота колебаний.

Система, совершающая гармонические колебания, называется гармоническим осциллятором. Существенно, что амплитуда и частота гармонических колебаний постоянны и не зависят друг от друга.

Условия возникновения гармонических колебаний :на частицу (или систему частиц) должна действовать сила или момент сил, пропорциональные смещению частицы из положения равновесия и

стремящиеся вернуть ее в положение равновесия. Такая сила (или момент сил)

называется квазиупругой ; она имеет вид , где k называется квазижесткостью.

В частности это может быть и просто упругая сила, приводящая в колебания пружинный маятник, колеблющийся вдоль оси x. Уравнение движения такого маятника имеет вид:

или ,

где введено обозначение .

Непосредственной подстановкой нетрудно убедиться, что решением уравнения

является функция

x=A cos( 0 t+ 0),

где A и  0 -- постоянные величины , для определения которых следует задать два начальных условия : положение x(0)=x 0 частицы и ее скорость v х (0)=v 0 в начальный (нулевой) момент времени.

Это уравнение представляет собою динамическое уравнение любых

гармонических колебаний с собственной частотой  0 . Для грузика на

пружинке период колебаний пружинного маятника

.

2. Физический и математический маятники

Физический маятник -- это любое физическое тело, совершающее

колебания вокруг оси, не проходящей через центр масс, в поле сил тяжести.

Для того, чтобы собственные колебания системы были гармоническим, необходимо, чтобы амплитуда этих колебаний была мала . Кстати, то же справедливо и для пружинки: F упр =-kx только для малых деформаций пружинки x.

Период колебаний определяется формулой:

.

Заметим, что квазиупругим здесь является момент силы тяжести

M я = - mgd , пропорциональный угловому отклонению .

Частным случаем физического маятника является математический маятник -- точечная масса, подвешенная на невесомой нерастяжимой нити длины l. Период малых колебаний математического маятника

3. Затухающие гармонические колебания

В реальной ситуации на осциллятор со стороны окружающей среды всегда действуют диссипативные силы (вязкого трения, сопротивления среды)

, которые замедляют движение. Уравнение движения тогда принимает вид:

.

Обозначая и , получаем динамическое уравнение собственных затухающих гармонических колебаний:

.

Как и в случае незатухающих колебаний, это общая форма уравнения.

При не слишком большом сопротивлении среды 

Функция представляет собою убывающую по экспоненте амплитуду колебаний. Это уменьшение амплитуды называется релаксацией (ослаблением) колебаний, а  называется коэффициентом затухания колебаний.

Время , за которое амплитуда колебаний уменьшается в e=2,71828 раз,

называется временем релаксации .

Кроме коэффициента затухания, вводится еще одна характеристика,

называемая логарифмическим декрементом затухания -- это натуральный

логарифм отношения амплитуд (или смещений) через период:

Частота собственных затухающих колебаний

зависит не только от величины квазиупругой силы и массы тела, но и от

сопротивления среды.

4. Сложение гармонических колебаний

Рассмотрим два случая такого сложения.

a) Осциллятор участвует в двух взаимно-перпендикулярных колебаниях.

В этом случае вдоль осей x и y действуют две квазиупругие силы. Тогда

Для того, чтобы найти траекторию осциллятора, следует исключить из этих уравнений время t.

Проще всего это сделать в случае кратных частот :

Где n и m -- целые числа.

В этом случае траекторией осциллятора будет некоторая замкнутая кривая, называемая фигурой Лиссажу .

Пример : частоты колебаний по x и y одинаковы ( 1 = 2 =), а разность фаз колебаний (для простоты положим  1 =0).

.

Отсюда находим: -- фигурой Лиссажу будет эллипс.

б) Осциллятор совершает колебания одного направления .

Пусть таких колебаний пока будет два; тогда

где и -- фазы колебаний.

Аналитически колебания складывать очень неудобно, особенно, когда их

не два, а несколько; поэтому обычно используется геометрический метод векторных диаграмм .

5. Вынужденные колебания

Вынужденные колебания возникают при действии на осциллятор

внешней периодической силы, изменяющейся по гармоническому закону

с частотой  вн: .

Динамическое уравнение вынужденных колебаний:

Для установившегося режима колебаний решением уравнения будет гармоническая функция:

где A -- амплитуда вынужденных колебаний, а  -- отставание по фазе

от вынуждающей силы.

Амплитуда установившихся вынужденных колебаний:

Отставание по фазе установившихся вынужденных колебаний от внешней

вынуждающей силы:

.

\hs Итак: установившиеся вынужденные колебания происходят

с постоянной, не зависящей от времени амплитудой, т.е. не затухают,

несмотря на сопротивление среды. Это объясняется тем, что работа

внешней силы идет на

увеличение механической энергии осциллятора и полностью компенсирует

ее убывание, происходящее из-за действия диссипативной силы сопротивления

6. Резонанс

Как видно из формулы, амплитуда вынужденных колебаний

А вн зависит от частоты внешней вынуждающей силы  вн. График этой зависимости называется резонансной кривой или амплитудно-частотной характеристикой осциллятора.