В какой группе находится водород. III. Распространение в природе

Свечение водорода в газоразрядной трубке

Элемент: водород (Hydrogenium)

Химический символ: Н

Порядковый номер: 1

Год открытия: 1766

Стандартная атомная масса: 1.00784

Температура плавления: 13.99 К

Температура кипения: 20.271 К

Плотность при стандартных условиях: 0.08988 г/л

Скорость звука в водороде: 1310 м/с (газ при 27 °C)

Число стабильных изотопов: 2

Кристаллическая решётка: гексагональная

Облака межзвёздного газа, из которого рождаются звёзды, представляют собой в основном водород

Давным-давно, в одной далекой галактике… Впрочем, нет. Давным-давно, примерно 13,799 миллиардов (с точностью в 0, 021 миллиард) лет назад, когда не было еще ни одной галактики, да и Вселенной по сути не было, случилась инфляция. Некое могучее поле, именуемое инфлатоном, за невообразимо короткое время невообразимо сильно раздуло Ничего (или сингулярность). И возник наш мир. Уже через сто секунд после начала Большого взрыва во Вселенной было полным-полно протонов – ядер самого простого химического элемента, водорода. Получилось даже небольшое количество «слипшихся» протонов и нейтронов – ядер стабильного изотопа водорода, дейтерия. Почти все атомы водорода возникли именно тогда – во время Большого взрыва.

Несмотря на то, что уже 13 с лишним миллиардов лет идет процесс превращения водорода в другие элементы, и сейчас 75% всей видимой материи во Вселенной – это атомы водорода (про тёмную материю мы ничего не знаем и не скажем).

С водородом как простым веществом человечество познакомилось в 1671 году, когда Роберт Бойль догадался всыпать железные опилки в кислоту. Правда, тогда еще то, что выделялось в итоге, еще не выделялось в самостоятельное вещество. Права нового вещества и нового элемента нашему герою дали почти век спустя. В 1766 году Генри Кавендиш «признал» в продуктах реакции «опилки-кислота» самостоятельный газ. Правда, тогда само слово «водород» (или hydrogen, что в переводе с греческого обозначает то же самое – «рождающий воду», еще не появилось.

Генри Кавендиш

Зато Кавендиш назвал его «горючим воздухом» и предположил, что это и есть загадочный «флогистон», переносчик тепла. Впрочем, семнадцатью годами позже Антуан Лоран Лавуазье вместе с Пьером Симоном Лапласом сообразили, что «горючий воздух» при горении образует воду. Так и появилось современное название элемента номер один – его придумал Лавуазье самолично. Кстати, нужно отметить, что из всех четверых выше упомянутых ученых первооткрывателем водорода считается только Кавендиш. Что поделать, вопросы приоритета в истории науки самые странные.

Кстати, если говорить о названиях, то в нашей стране с 1801 года с подачи последователя Ломоносова, Василия Севергина, водород назывался водотворным веществом:

«Водотворное вещество в соединении с кислотворным составляет воду. Сие можно доказать, как через разрешение, так и через составление».

Василий Севергин

Лишь почти четверть века спустя другой почитатель Ломоносова, химик Михаил Соловьев, предложил слово «водород» (опираясь как раз на «кислород» Ломоносова).

До самого конца XIX века человечество имело дело исключительно с газообразным водородом. Но в 1898 году «король холода» Джеймс Дьюар наконец-то сумел получить жидкий водород, а годом позже появился и твердый. Для этого пришлось охладить вещество до 20,27 и 13,99 градусов Кельвина соответственно. Твёрдый водород имел плотность 0,086 г/см 3 и стал твердым веществом с одной из самых низких плотностей.

Статья Дьюара Sur la solidification de l’hydrogène вышла в журнале Annales de Chimie et de Physique ,
(7th series, vol. 18, Oct. 1899).

Джеймс Дьюар

Именно атом водорода стал «полем боя» для новой физики – непротиворечивую модель атома пытались построить и Томсон, и Резерфорд… В 1913 году Нильс Бор сформулировал свои знаменитые постулаты, объяснившие на основе квантовой механики особенности строения атома. И именно атом водорода подтвердил правоту Бора: рассчитанный на ее основе спектр первого элемента совпал с тем, что мы видим в реальности.

Следующее важнейшее открытие в области водорода сделал американец Гарольд Клейтон Юри, ученик физхимика Гилберта Льюиса, автора концепции ковалентной связи, кислот и оснований Льюиса, номинированного на Нобелевскую премию 41 раз, но так и не получившего абсолютно заслуженной награды (о нем мы обязательно напишем в рубрике «История химии»).

Гарольд Клейтон Юри

В конце 1920-х годов были открыты изотопы кислорода.

Исходя из того, что атомный вес кислорода ровно в 16 раз больше атомного веса водорода, а обычные спектрометрические и масс-спектрометрические данные давали разные соотношения, Юри предположил, что и у водорода есть более тяжелый изотоп. Поиски начались в 1931 году.

Юри рассчитал, что тяжелый водород должен иметь красное смещение в бальмеровской линии спектра от 0,1 до 0,18 нанометра. На том спектрографе, который был в распоряжении ученого, разница в линиях спектра обычного и тяжелого водорода должна была быть около 1 миллиметра. Это уже можно было различить, однако по расчетам выходило, что на 1 атом тяжелого изотопа водорода, должно приходиться около 4500 атомов легкого. Линия была, но очень слабая. И Юри не стал делать никакую «предварительную» публикацию, а решил поискать способ более надежного доказательства.

Вместе с Джорджем Мозли Мерфи Юри расчитал, что у тяжелого водорода будет чуть более высокая температура кипения. По всему выходило, что постепенно «упаривая» пять литров жидкого водорода, можно будет получить миллилитр образца, в котором тяжелого изотопа будет на два порядка больше.

Со второй попытки это удалось - дейтерий был открыт. Статья в PhysRev вышла в 1932 году под авторством Юри, Мерфи и знакомца Юри по университету Джонса Хопкинса Фердинанда Брикведде, который и сделал тот самый миллилитр обогащенного дейтерием водорода в криогенной лаборатории Национального бюро стандартов в Вашингтоне. Юри получил за свое открытие Нобелевскую премию по химии (и он был второй «чистый» физик после Резерфорда, получивший «химического Нобеля»). В том же году, в котором Юри открыл дейтерий, Джеймс Чедвик открыл нейтрон, который помог объяснить существование изотопов.

Свечение дейтерия в газоразрядной трубке

Сам Юри и предложил в 1933 году названия для изотопов. Первый, второй, третий – ну, если «третий» откроют. То бишь – протий, дейтерий и тритий. Уже упомянутый здесь Резерфорд не подкачал – и уже в 1934 году синтезировал таки тритий, который, в отличие от дейтерия оказался радиоактивным – с периодом полураспада 12,32 года.

Кстати, нужно помнить, что помимо протия, дейтерия и трития, в современных лабораториях удалось получить ядра водорода, еще более насыщенные нейтронами: от 4 Н до 7 Н (между прочим, о прогрессе науки говорит тот факт, что к моменту выхода книги «Популярная библиотека химических элементов» был известен только первый изотоп из этого ряда).

Забегая вперед, скажем, что сейчас тритий используется даже в быту: крошечные его количества (один килограмм трития обходится в 30 миллионов долларов) используют в качестве подсветки для часов. Электроны, испускаемые им при распаде, возбуждают люминофор, нанесенный на циферблат часов.

Тритиевая подсветка

Вскоре после открытия изотопов водорода, серьезное и грозное применение получил оксид дейтерия, попросту – тяжёлая вода. Как оказалось, дейтерий – идеальный замедлитель нейтронов, а тяжелая вода может еще и уносить излишнее тепло от реактора.

Ну а в начале 1950-х годов водород стал самым смертельным оружием из имеющегося у человечества: ученые научились воспроизводить процессы, происходящие в природе только в звёздах: термоядерный синтез, в котором из ядер изотопов водорода получаются ядра гелия, а излишек массы полностью превращается в энергию по знаменитой формуле Эйнштейна E=mc 2 .

Термоядерное оружие стало возможным только после открытия удивительного вещества – дейтерида лития-6. Этот гидрид решает сразу две проблемы. Во-первых, при облучении атомов лития-6 быстрыми нейтронами, которые в избытке образуются при первичном ядерном взрыве, синтезируется тритий.

6 3 Li + 1 0 n → 4 2 Не + 3 1 Н + 4,784 МэВ.

А затем с образовавшимся тритием в термоядерную реакцию вступает дейтерий.

2 1 Н + 3 1 Н → 4 2 Не + 1 0 n + 17,6 МэВ.

В 1952 году США взорвали первое термоядерное устройство, в 1953 году СССР испытал созданную Андреем Сахаровым водородную бомбу, а там и до стомегатонной «кузькиной матери» было недалеко.

Айви Майк, первое термоядерное испытание

Однако водород дает нам и жизнь. Очень много спорят, возможна ли жизнь на основе углерода. И предлагают взамен, например, кремний – но альтернатив водороду в органической химии нет. Как и водородсодержащим растворителям тоже, особенно воде. Все благодаря тому, что стандартный атом водорода – это протон с единственным электроном. Его ион – «голый» протон, не защищенный электронами. Благодаря этому атомы водорода способны образовывать слабые (намного слабее ковалентных) водородные связи.

Водородные связи между молекулами воды

Но именно из-за водородных связей вода существует в жидком состоянии такой длинный промежуток температур, именно водородные связи удерживают двойную спираль ДНК и позволяют белкам сворачиваться в структуры, в которых они выполняют все свои мириады функций в организмах. Более того, благодаря тому, что атом водорода, самый распространенный атом живых органзимах, обладает собственным магнитным моментом, стало возможным появление любимой игрушки доктора Хауса – МРТ. Те красивые картинки слоев головного мозга, которые мы так часто видим теперь, построены компьютером исключительно благодаря ядерному магнитному резонансу ядер атомов водорода.

Впрочем, выходит водород сейчас на позиции и мирной энергетики. И если до управляемого термоядерного синтеза нам сейчас далеко – пока что не удается обуздать стихию, бушующую в звездах и в термоядерном взрыве, то водородная энергетика сейчас на подъеме. Водородные автомобили, водородные топливные элементы… Впрочем, и здесь проблем хватает: технологии уперлись в технологические барьеры.

Как говорит крупнейший эксперт по водородным топливным элементам в нашей стране Юрий Добровольский из Института проблем химической физики РАН в Черноголовке, «…барьер состоит именно в комплексной энергоемкости – для летных средств немного тяжеловато, для наземного транспорта – занимает большой объем, а для энергетики – дороговато».

Юрий Добровольский

Кстати, в нашей стране запустили мегаконкурсы UP GREAT «Первый элемент» , посвященные прорыву этих барьеров. Конкурса два: энергоустановки для малых беспилотников («Первый элемент. Воздух») и энергоустановки для автомобилей и малых судов и авиации («Первый элемент. Земля»).

За преодоление технологического барьера полагаются значительные денежные призы, необременённые отчётной документацией: до 60 млн рублей в конкурсе «Воздух», до 140 млн рублей – «Земля». Есть за что побороться.

Впрочем, и «чистые экспериментаторы», и теоретики тоже продолжают работать с водородом. Особенно интересуют ученых экзотические состояния первого элемента: что будет с водородом, если его очень сильно сжать. Предполагалось, что водород в таких условиях станет… металлом, испытав фазовый переход. Ядра водорода давлением сближаются друг с другом на расстояние, сравнимое с длиной волны электронов (мы же помним, что в квантовом мире электрон – и волна, и частица одновременно). Таким образом, сила связи электрона с ядром становится нелокализованной, электроны образуют свободный электронный газ так же, как в металлах.

Более того, некоторые ученые считают, что металлический водород может быть сверхпроводником при комнатной температуре.

Штурм металлического водорода длился десятилетиями: существование предсказали уже в 1935 году Евгений Вигнер и Хиллард Гентингтон, однако только в 1996 году его смогли получить на короткое время, а в 2016-2017 годах развернулся настоящий научный детектив. Сначала в октябре 2016 года Ранга Диас и Исаак Сильвера из Гарварда провели эксперимент, в котором сжали водород под давлением почти в пять миллионов атмосфер и заявили, что им удалось увидеть блеск металлического водорода. Статья в Science вышла в январе 2017 года. Последовал вал критики и скептицизма, усилившийся после того, что Сильвера месяцем позже сказал, что повторить эксперимент они не смогут, ибо экспериментальная установка разрушена и образец металлического водорода утерян. В августе 2017 года авторы скорректировали свои данные, заявив, что в главном они правы – металлический водород они получили. В любом случае, было бы неплохо повторить.

Исследователи предполагают, что металлический водород может составлять основу ядер планет-гигантов типа Юпитера, что в свете открываемых сотнями космических тел за пределами Солнечной системы становится еще интереснее.

Металлический водород в разрезе Юпитера. Показан коричневым

…Водород – древнейший элемент нашего мира. Несмотря на то, что он – самый простой атом, важность его сложно переоценить. Мы можем бесконечно о нем рассказывать, написать о нем не одну книгу – и все же не исчерпать его.

Текст: Алексей Паевский

Водород - это самый лёгкий и самый распространённый химический элемент. В наше время каждый слышал о нём, а ведь совсем недавно он представлял из себя великую тайну даже для лучших учёных. Согласитесь, этого достаточно, чтобы узнать побольше о химическом элементе водород.

Водород: распространение в природе

Как мы уже сказали выше, водород — это самый распространенный элемент. Причем не только на Земле, но и во всей Вселенной! Солнце почти наполовину состоит из этого химического элемента, да и большинство звёзд имеют в своей основе водород. В межзвездных пространствах водород также является самым распространенным элементом. На Земле водород находится в виде соединений. Он входит в состав нефти, газов, даже живых организмов. Мировой Океан содержит около 11% водорода по массе. В атмосфере его совсем немного, всего около 5 десятитысячных процента.

История открытия водорода

О существовании водорода догадывались ещё средневековые алхимики. Так, Парацельс в своих трудах указывал, что при действии кислоты и железа выделяются пузырьки «воздуха». Но что это за «воздух» он понять не мог. В те времена учёные думали, что в каждом горючем веществе есть какая-то мистическая огненная составляющая, которая поддерживает горение. Эта догадка получила название теории «флогистона». Алхимики считали, например, что дерево состоит из пепла, который остается после сжигания, и флогистона, который освобождается при горении.
Впервые же свойства водорода изучили английские химики Генри Кавендиш и Джозеф Пристли в XVIII веке. Но и они полностью не осознали сути своего открытия. Они думали, что легкий газ (а водород легче воздуха в 14 раз) есть ни что иное как мистический флогистон.
И только Антуан Лавуазье доказал, что водород это никакой не флогистон, а самый настоящий химический элемент. Во время своих опытов он сумел получить водород из воды и затем доказал, что обратно вода получается при горении водорода. Поэтому этот химический элемент и получил такое название — «рождающий воду».

Химические свойства водорода

Водород самый первый химический элемент, в таблице Менделеева обозначается символом H. Представляет собой легкий газ без запаха и цвета. Твердый водород – самое легкое твердое вещество, а жидкий — самая лёгкая жидкость. К тому же жидкий водород при попадании на кожу может вызвать сильнейшее обморожение. Атомы и молекулы водорода – самые маленькие. Поэтому то воздушный шарик, надутый этим газом, очень быстро сдувается — водород просачивается через резину. При смешении водорода с кислородом воздуха образуется очень взрывоопасная смесь. Она называется «гремучий газ».
При вдыхании газа частота голоса становится намного выше обычной. Например, мужской грубый бас будет похож на голоса Чипа и Дейла. Однако, подобные химические опыты проводить не стоит, по причине указанной выше. Водород и кислород образуют гремучий газ, который при выдохе может легко взорваться!

Применение водорода

Несмотря на свою горючесть, водород широко используется во многих отраслях промышленности. В основном его используют при производства аммиака для минеральных удобрений и при производстве спирта и пластмассы. Когда-то водородом наполняли дирижабли и воздушные шары, этот легкий газ поднимал их в воздух совершенно без труда. Но сейчас в авиации и космической технике он используется только в качестве топлива для космических ракет. Созданы двигатели для автомобилей, работающие на водороде. Они самые экологически чистые, ведь при сгорании выделяется только вода. Однако на данный момент водородные двигатели имеют ряд существенных недостатков, не отвечаю в полной мере требованиям безопасности, поэтому их применение пока совершенно ничтожно. В пищевой промышленности водород используется при производстве маргарина, а также для упаковки продуктов. Он даже зарегистрирован в качестве пищевой добавки E949. В энергетике водород применяется для охлаждения генераторов и для выработки электроэнергии в водородно-кислородных топливных элементах.

знать

  • положение водорода в таблице Менделеева, нахождение в природе и практическое применение;
  • строение атома, валентность, степени окисления водорода;
  • способы получения и свойства простого вещества;
  • основные типы соединений водорода;

уметь

  • составить уравнения реакций получения водорода и реакций, характеризующих химические свойства водорода;
  • проводить расчеты по уравнениям реакций, в которых участвует водород;

владеть

Навыками прогнозирования протекания реакций с участием водорода и его соединений.

Положение водорода в периодической системе элементов. Водород в природе

Водород Н - первый элемент в таблице Менделеева, состоящий из простейших атомов, имеющих заряд ядра +1 и всего один электрон. В гл. 5 и 6 уже рассматривалось строение атома водорода и молекул Н 2 . Водород не только имеет разнообразное практическое применение, но и сыграл важную роль в развитии химии и физики.

Водород был впервые получен в виде газообразного простого вещества в первой половине XVI в. Парацельсом. В 1776 г. Г. Кавендиш исследовал его и указал отличия от других газов. А. Лавуазье первый получил водород из воды и доказал, что вода есть химическое соединение водорода с кислородом (1783).

Существуют разные мнения о том, в какую группу таблицы Менделеева следует поместить водород. Первый период составляют лишь два химических элемента - водород и гелий. Положение гелия как химически инертного элемента в группе VIIIA не вызывает сомнений. Тогда остаются семь пустых клеток в группах с I по VII. В какую из этих групп поместить водород? По строению атома он может быть отнесен к группе IA, так как имеет лишь один электрон на внешнем уровне. Но одновременно у него недостает лишь одного электрона до завершенной оболочки с п = 1. Наличием одной вакансии во внешней оболочке характеризуются элементы группы VIIА. Следовательно, водород можно поместить и в эту группу. Кроме того, у водорода, как и у элемента углерода в группе IVА, имеется ровно половина от максимального числа электронов на соответствующем уровне. Водород проявляет также сходство с кислородом и азотом, так как образует двухатомные молекулы (Н 2 , N 2 , 0 2). Поэтому целесообразно не вести дискуссии о самом правильном положении водорода в таблице Менделеева, а отдать водороду всю полосу в первом периоде от I до VII группы, не деля ее на клетки.

Водород представляет собой самый распространенный элемент во Вселенной. На его долю приходится около 90% всех атомов. Это объясняется тем, что на этапе протекания ядерных реакций в горячей плазме после возникновения Вселенной большая часть протонов не подверглась превращениям. При достаточном остывании плазмы в ходе дальнейшего расширения протоны соединились с электронами, образовав атомы водорода. Первичные ядерные реакции привели к образованию значительного количества гелия, и он оказался вторым по распространенности элементом (9%). Все остальные элементы, образовавшиеся в процессе синтеза ядер в звездах, вместе составляют приблизительно 1%.

Вещество планеты Земля содержит значительно меньшую долю легких элементов. Водорода по числу атомов около 16%, а по массе 1%. Большая часть имеющегося водорода находится в составе воды, в подземных месторождениях углеводородов, в биомассе растений и животных, а также в различных органических остатках.

Водород представляет собой биогенный элемент , или элемент жизни, т.е., находясь в составе организмов всех растений и животных, водород необходим для их жизнедеятельности. По числу атомов водород в живых организмах стоит на первом месте среди всех химических элементов. В организме человека атомы водорода составляют более 62% от суммарного числа атомов. В биоорганических соединениях водород связан как с атомами углерода, гак и с кислородом, азотом и серой функциональных групп. Следует учитывать, что живые организмы состоят не только из органических веществ, но содержат также более 60% воды, без которой биологические процессы невозможны. В сухом веществе живых организмов доля атомов водорода достигает 70%. Водород играет активную роль в процессах жизнедеятельности, переходя в виде протона от одних молекул к другим и образуя водородные связи. Окисление органических соединений с переходом атомов водорода в состав воды является одним из источников необходимой для жизнедеятельности энергии. Например, окисление (дегидрирование) органического вещества с гидроксогруппой по схеме

дает более 250 кДж энергии на моль окисляемых групп (на схеме R - различные углеродсодержащие радикалы или водород).

У водорода три изотопа. В природе наиболее распространен легкий изотоп Н, называемый протием. Ядро протия представляет собой элементарную частицу протон. На долю протия приходится 99,985% от числа атомов. Второй изотоп называют тяжелым водородом или дейтерием. Для его обозначения используется особый символ D. Ядро дейтерия состоит из протона и нейтрона. Во всех водородсодержащих веществах имеется примесь дейтерия - около 0,015% общего числа атомов водорода. Третий изотоп водорода - радиоактивный тритий j Н (символ Т), имеющий период полураспада 12,33 лет. Тритий в ничтожно малом количестве имеется в природе, так как образуется в результате воздействия нейтронов космических лучей на атомы азота. Большое количество трития образуется в ядерных реакторах. Как тритий, так и дейтерий широко применяются в ядерной технике.

Относительное различие по массе между атомами протия и дейтерия составляет 100%. Этим обусловлено заметное отличие свойств веществ, содержащих иротий, от тех же веществ, содержащих дейтерий. Для примера сравним некоторые свойства обычного водорода Н 2 и тяжелого водорода D 2 (табл. 17.1). Наиболее сильно различаются плотности обоих веществ, так как при близости радиусов электронных орбиталей, определяющих межатомные расстояния, ядра дейтерия вдвое тяжелее, чем ядра протия. Двукратное увеличение массы атомов дейтерия но сравнению с нро- тием приводит также к существенному повышению температур плавления и кипения простых веществ.

Таблица 17.1

Свойства простых веществ водорода и дейтерия

1. Ядро висмунта испытывает бета распад, при этом образуется элемент Х. Этот элемент можно обозначить как... 2. Какой порядковый номер в

таблице менделеева имеет элемент, который образуется в результате бета распада элемента с порядковым номером Z?

3. В результате альфа распада изменятеся....

В результете бета распада изменятеся....

Известно, осколки ядра урана представляют собой ядра атомов разных химических элементов из середины таблицы Д. И. Менделеева. Например, одна из

возможных реакций может быть записана в виде: 92U + 0n1 56Ва + X + 2 * 0n Пользуясь законом сохранения заряда и таблицей менделеева определите что это за элемент. решение пожалуйста:)

1.С какой силой притягиваются два корабля массами по 10000т, находящихся на расстоянии 1км друг от друга?

А. 6,67 мкН; Б. 6,67мН; В. 6,67Н; Г. 6,67МН.

2.В соревнованиях по перетягиванию каната участвуют четверо мальчиков. Влево тянут канат двое мальчиков с силами 530Н и 540Н соответственно, а вправо – двое мальчиков с силами 560Н и 520Н соответственно. В какую сторону и какой результирующей силой перетянется канат?

А. Вправо, силой 10Н; Б. Влево, силой 10Н; В. Влево, силой 20Н; Г. Победит дружба.

3. Порядковый номер алюминия в таблице Менделеева 13, а массовое число равно 27. Сколько электронов вращаются вокруг ядра атома алюминия?

А. 27; Б. 13; В. 40; Г. 14.

4.Двигаясь с начальной скоростью 54км/ч, автомобиль за 10с прошел путь 155м. С каким ускорением двигался автомобиль и какую скорость он приобрел в конце пути?

5.Какова сила тока в стальном проводнике длиной 12м и сечением 4мм2, на который подано напряжение 72мВ? (удельное сопротивление стали 0,12 Ом мм2/м)

1)отметьте число электронов,которое может содержаться на s-подуровне электронной оболочки атомов А)2 В)6 Б)3 Г)8 2)Отметьте форму р-орбиталей: A)шар

В)обьемная восьмерка Б)еллипс Г)тороид 3) Отметье название семейства простых вешеств,которое образуют элементы главной подгруппы седьмой группы Периодической системы А)инертные газы Б)Щелочные металлы В)Галогенты Г)щелочноземельные металлы 4)Подчеркните одной чертой символы металлических элементов,которые входят в состав главных подгрупп,а двумя - металлические элементы побочных подгрупп:Na,S,Cu,Br,Pb,Ba,Fe,Si,Au. 5)Соедините линиями названия химических элементов и число электронов на внешнем электронном уровне их атомов: Хлор 1 Силиций 7 Цезий 4 6)определите число протонов,электронов и нейтронов в атомах,Хакактеристика 7)Запишите названия химических эдементов,которым соответсвуют электронные конфигурации: (ПРОПУСКАЕМ) 8)Изобразите распределение электронов в электронной оболочке атомов карбона и сульфура. 9) Составьте уравнения реакций взаимодействия высшего оксида сульфура с данными веществами А) ___PbO + _________ --> _____________ Б) ____KOH + __________ ---> ___________ В) _____Mg(OH)2 + _______ --> ___________ Г) _____Zno + ___________ --> ______________ 10)Порядковые номера элементов А и Б Соответсвтвенно N и N +2,Если химический элемент А - самый легкий галоген,то каким химическим элементов будет Б? Определите его порядковый номер в периодической системе. 11)Простое вещестров массой 2,75 Г,которое образовано элементом с электронной конфигурацией 1s22S22p1 (После 1s и 2s двойки идут маленькие,после p еденица маленькая) прореагировало с простыми веществом,образованным элементом,в ядраъ атома которого на три протона больше,чем у вышеупомянутого элемента,вычислите массу продукта реакции. ЭТО ВСЁ буду весьма благодарен если правельно поможете с заданиями.

Водород (лат. hydrogenium), Н, химический элемент, первый по порядковому номеру в периодической системе Менделеева; атомная масса 1,00797. При обычных условиях В. - газ; не имеет цвета, запаха и вкуса.

Историческая справка. В трудах химиков 16 и 17 вв. неоднократно упоминалось о выделении горючего газа при действии кислот на металлы. В 1766 Г. Кавендиш собрал и исследовал выделяющийся газ, назвав его «горючий воздух». Будучи сторонником теории флогистона , Кавендиш полагал, что этот газ и есть чистый флогистон. В 1783 А. Лавуазье путём анализа и синтеза воды доказал сложность её состава, а в 1787 определил «горючий воздух» как новый химический элемент (В.) и дал ему современное название hydrog e ne (от греч. h y d o r - вода и genn a o - рождаю), что означает «рождающий воду»; этот корень употребляется в названиях соединений В. и процессов с его участием (например, гидриды, гидрогенизация). Современное русское наименование «В.» было предложено М. Ф. Соловьёвым в 1824.

Распространённость в природе . В. широко распространён в природе, его содержание в земной коре (литосфера и гидросфера) составляет по массе 1%, а по числу атомов 16%. В. входит в состав самого распространённого вещества на Земле - воды (11,19% В. по массе), в состав соединений, слагающих угли, нефть, природные газы, глины, а также организмы животных и растений (т. е. в состав белков, нуклеиновых кислот, жиров, углеводов и др.). В свободном состоянии В. встречается крайне редко, в небольших количествах он содержится в вулканических и других природных газах. Ничтожные количества свободного В. (0,0001% по числу атомов) присутствуют в атмосфере. В околоземном пространстве В. в виде потока протонов образует внутренний («протонный») радиационный пояс Земли . В космосе В. является самым распространённым элементом. В виде плазмы он составляет около половины массы Солнца и большинства звёзд, основную часть газов межзвёздной среды и газовых туманностей. В. присутствует в атмосфере ряда планет и в кометах в виде свободного h 2 , метана ch 4 , аммиака nh 3 , воды h 2 o, радикалов типа ch, nh, oh, sih, ph и т.д. В виде потока протонов В. входит в состав корпускулярного излучения Солнца и космических лучей.

Изотопы, атом и молекула. Обыкновенный В. состоит из смеси 2 устойчивых изотопов: лёгкого В., или протия (1 h), и тяжёлого В., или дейтерия (2 h, или d). В природных соединениях В. на 1 атом 2 h приходится в среднем 6800 атомов 1 h. Искусственно получен радиоактивный изотоп - сверхтяжёлый В., или тритий (3 h, или Т), с мягким?-излучением и периодом полураспада t 1/2 = 12,262 года. В природе тритий образуется, например, из атмосферного азота под действием нейтронов космических лучей; в атмосфере его ничтожно мало (4 · 10 -15 % от общего числа атомов В.). Получен крайне неустойчивый изотоп 4 h. Массовые числа изотопов 1 h, 2 h, 3 h и 4 h, соответственно 1,2, 3 и 4, указывают на то, что ядро атома протия содержит только 1 протон, дейтерия - 1 протон и 1 нейтрон, трития - 1 протон и 2 нейтрона, 4 h - 1 протон и 3 нейтрона. Большое различие масс изотопов В. обусловливает более заметное различие их физических и химических свойств, чем в случае изотопов других элементов.

Атом В. имеет наиболее простое строение среди атомов всех других элементов: он состоит из ядра и одного электрона. Энергия связи электрона с ядром (потенциал ионизации) составляет 13,595 эв . Нейтральный атом В. может присоединять и второй электрон, образуя отрицательный ион Н - ; при этом энергия связи второго электрона с нейтральным атомом (сродство к электрону) составляет 0,78 эв . Квантовая механика позволяет рассчитать все возможные энергетические уровни атома В., а следовательно, дать полную интерпретацию его атомного спектра . Атом В. используется как модельный в квантовомеханических расчётах энергетических уровней других, более сложных атомов. Молекула В. h 2 состоит из двух атомов, соединённых ковалентной химической связью. Энергия диссоциации (т. е. распада на атомы) составляет 4,776 эв (1 эв = 1,60210 · 10 -19 дж ). Межатомное расстояние при равновесном положении ядер равно 0,7414 · a . При высоких температурах молекулярный В. диссоциирует на атомы (степень диссоциации при 2000°С 0,0013, при 5000°С 0,95). Атомарный В. образуется также в различных химических реакциях (например, действием zn на соляную кислоту). Однако существование В. в атомарном состоянии длится лишь короткое время, атомы рекомбинируют в молекулы h 2 .

Физические и химические свойства . В. - легчайшее из всех известных веществ (в 14,4 раза легче воздуха), плотность 0,0899 г/л при 0°С и 1 атм . В. кипит (сжижается) и плавится (затвердевает) соответственно при -252,6°С и -259,1°С (только гелий имеет более низкие температуры плавления и кипения). Критическая температура В. очень низка (-240°С), поэтому его сжижение сопряжено с большими трудностями; критическое давление 12,8 кгс/см 2 (12,8 атм ), критическая плотность 0,0312 г/см 3 . Из всех газов В. обладает наибольшей теплопроводностью, равной при 0°С и 1 атм 0,174 вт/ (м · К ), т. е. 4,16 · 0 -4 кал/ (с · см · °С ). Удельная теплоёмкость В. при 0°С и 1 атм С р 14,208 · 10 3 дж/ (кг · К ), т. е. 3,394 кал/ (г · °С ). В. мало растворим в воде (0,0182 мл/г при 20°С и 1 атм ), но хорошо - во многих металлах (ni, pt, pd и др.), особенно в палладии (850 объёмов на 1 объём pd). С растворимостью В. в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия В. с углеродом (так называемая декарбонизация). Жидкий В. очень лёгок (плотность при -253°С 0,0708 г/см 3) и текуч (вязкость при - 253°С 13,8 спуаз ).

В большинстве соединений В. проявляет валентность (точнее, степень окисления) +1, подобно натрию и другим щелочным металлам; обычно он и рассматривается как аналог этих металлов, возглавляющий 1 гр. системы Менделеева. Однако в гидридах металлов ион В. заряжен отрицательно (степень окисления -1), т. е. гидрид na + h - построен подобно хлориду na + cl - . Этот и некоторые другие факты (близость физических свойств В. и галогенов, способность галогенов замещать В. в органических соединениях) дают основание относить В. также и к vii группе периодической системы. При обычных условиях молекулярный В. сравнительно мало активен, непосредственно соединяясь лишь с наиболее активными из неметаллов (с фтором, а на свету и с хлором). Однако при нагревании он вступает в реакции со многими элементами. Атомарный В. обладает повышенной химической активностью по сравнению с молекулярным. С кислородом В. образует воду: h 2 + 1 / 2 o 2 = h 2 o с выделением 285,937 · 10 3 дж/моль , т. е. 68,3174 ккал/моль тепла (при 25°С и 1 атм ). При обычных температурах реакция протекает крайне медленно, выше 550°С - со взрывом. Пределы взрывоопасности водородо-кислородной смеси составляют (по объёму) от 4 до 94% h 2 , а водородо-воздушной смеси - от 4 до 74% h 2 (смесь 2 объёмов h 2 и 1 объёма О 2 называется гремучим газом ). В. используется для восстановления многих металлов, так как отнимает кислород у их окислов:

cuo +Н 2 = cu + h 2 o,

fe 3 o 4 + 4h 2 = 3fe + 4h 2 o, и т.д.

С галогенами В. образует галогеноводороды, например:

h 2 + cl 2 = 2hcl.

При этом с фтором В. взрывается (даже в темноте и при -252°С), с хлором и бромом реагирует лишь при освещении или нагревании, а с иодом только при нагревании. С азотом В. взаимодействует с образованием аммиака: 3h 2 + n 2 = 2nh 3 лишь на катализаторе и при повышенных температурах и давлениях. При нагревании В. энергично реагирует с серой: h 2 + s = h 2 s (сероводород), значительно труднее с селеном и теллуром. С чистым углеродом В. может реагировать без катализатора только при высоких температурах: 2h 2 + С (аморфный) = ch 4 (метан). В. непосредственно реагирует с некоторыми металлами (щелочными, щёлочноземельными и др.), образуя гидриды: h 2 + 2li = 2lih. Важное практическое значение имеют реакции В. с окисью углерода, при которых образуются в зависимости от температуры, давления и катализатора различные органические соединения, например hcho, ch 3 oh и др. Ненасыщенные углеводороды реагируют с В., переходя в насыщенные, например:

c n h 2 n + h 2 = c n h 2 n +2.

Роль В. и его соединений в химии исключительно велика. В. обусловливает кислотные свойства так называемых протонных кислот. В. склонен образовывать с некоторыми элементами так называемую водородную связь , оказывающую определяющее влияние на свойства многих органических и неорганических соединений.

Получение . Основные виды сырья для промышленного получения В. - газы природные горючие , коксовый газ (см. Коксохимия ) и газы нефтепереработки , а также продукты газификации твёрдых и жидких топлив (главным образом угля). В. получают также из воды электролизом (в местах с дешёвой электроэнергией). Важнейшими способами производства В. из природного газа являются каталитическое взаимодействие углеводородов, главным образом метана, с водяным паром (конверсия): ch 4 + h 2 o = co + 3h 2 , и неполное окисление углеводородов кислородом: ch 4 + 1 / 2 o 2 = co + 2h 2 . Образующаяся окись углерода также подвергается конверсии: co + h 2 o = co 2 + h 2 . В., добываемый из природного газа, самый дешёвый. Очень распространён способ производства В. из водяного и паровоздушного газов, получаемых газификацией угля. Процесс основан на конверсии окиси углерода. Водяной газ содержит до 50% h 2 и 40% co; в паровоздушном газе, кроме h 2 и co, имеется значительное количество n 2 , который используется вместе с получаемым В. для синтеза nh 3 . Из коксового газа и газов нефтепереработки В. выделяют путём удаления остальных компонентов газовой смеси, сжижаемых более легко, чем В., при глубоком охлаждении. Электролиз воды ведут постоянным током, пропуская его через раствор koh или naoh (кислоты не используются во избежание коррозии стальной аппаратуры). В лабораториях В. получают электролизом воды, а также по реакции между цинком и соляной кислотой. Однако чаще используют готовый заводской В. в баллонах.

Применение . В промышленном масштабе В. стали получать в конце 18 в. для наполнения воздушных шаров. В настоящее время В. широко применяют в химической промышленности, главным образом для производства аммиака . Крупным потребителем В. является также производство метилового и других спиртов, синтетического бензина (синтина) и других продуктов, получаемых синтезом из В. и окиси углерода. В. применяют для гидрогенизации твёрдого и тяжёлого жидкого топлив, жиров и др., для синтеза hcl, для гидроочистки нефтепродуктов, в сварке и резке металлов кислородо-водородным пламенем (температура до 2800°С) и в атомно-водородной сварке (до 4000°С). Очень важное применение в атомной энергетике нашли изотопы В. - дейтерий и тритий.

Лит.: Некрасов Б. В., Курс общей химии, 14 изд., М., 1962; Реми Г., Курс неорганической химии, пер. с нем., т. 1, М., 1963; Егоров А. П., Шерешевский Д. И., Шманенков И. В., Общая химическая технология неорганических веществ, 4 изд., М., 1964; Общая химическая технология. Под ред. С. И. Вольфковича, т. 1, М., 1952; Лебедев В. В., Водород, его получение и использование, М., 1958; Налбандян А. Б., Воеводский В. В., Механизм окисления и горения водорода, М. - Л., 1949; Краткая химическая энциклопедия, т. 1, М., 1961, с. 619-24.