Некоторые химические элементы получены искусственно. Радиоактивный химический элемент. Искусственный радиоактивный элемент. Практическое значение радиоактивности

Вариант № 17288

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word

Из курса химии Вам известны следующие способы разделения смесей: отстаивание, фильтрование, дистилляция (перегонка), действие магнитом, выпаривание, кристаллизация. На рисунках 1–3 представлены примеры использования некоторых из перечисленных способов.

Рис. 1 Рис. 2 Рис. 3

Какие из названных способов разделения смесей можно применить для очищения:

1) этанола и воды;

2) воды и песка?

Запишите в таблицу номер рисунка и название соответствующего способа разделения смеси.

На рисунке изображена схема распределения электронов по энергетическим уровням атома некоторого химического элемента.

На основании предложенной схемы выполните следующие задания:

1) определите химический элемент, атом которого имеет такое электронное строение;

2) укажите номер периода и номер группы в Периодической системе химических элементов Д.И. Менделеева, в которых расположен этот элемент;

3) определите, к металлам или неметаллам относится простое вещество, которое образует этот химический элемент.

Ответы запишите в таблицу.

Периодическая система химических элементов Д. И. Менделеева - богатое хранилище информации о химических элементах, их свойствах и свойствах их соединений, о закономерностях изменения этих свойств, о способах получения веществ, а также о нахождении их в природе. Так, например, известно, что с увеличением порядкового номера химического элемента в периодах радиусы атомов уменьшаются, а в группах увеличиваются.

Учитывая эти закономерности, расположите в порядке увеличения радиусов атомов следующие элементы: Запишите обозначения элементов в нужной последовательности.

В ответе укажите обозначения элементов разделяя &. Например, 11&22.

Ответ:

В приведённой ниже таблице перечислены характерные свойства веществ, которые имеют молекулярное и ионное строение. Характерные свойства веществ

Используя данную информацию, определите, какое строение имеют вещества йодоводород и карбонат
кальция

Запишите ответ в отведённом месте:

1) йодоводород

2) карбонат кальция

Установите, к какому классу/группе относятся неорганические вещества, формулы которых указаны в таблице. В пустые ячейки таблицы впишите названия групп/классов, к которым относится данное вещество.

Класс/
группа
Формула
вещества

1) Составьте оговоренное в тексте молекулярное уравнение реакции получения железа из гематита.

2) Зависит ли характеристика полученного железа от количества добавляемого кокса?


1) Составьте молекулярное уравнение реакции железа и азотной кислоты.

2) Каким образом легирование с помощью других металлов позволяет улучшить химическую стойкость железа?


Прочитайте следующий текст и выполните задания 6-8.

Железо один из самых используемых металлов человеком. Его применяется как в тяжелой так и в легкой промышленности, например в строительстве, сфере обороны, в сельском хозяйстве и т. д.

Железо в промышленности получают из железной руды, которая в основном состоит из гематита (Fe 2 O 3). Для этого в доменную печь помещают руду, кокс (С), который переходит при нагревании с угарный газ и дополнительные добавки, которые позволяют избавляться от нежелательных примесей.

Полученное таким образом железо не часто используют в чистом виде, так как оно химически не устойчиво и обычно его в процессе производства легируют разными добавками, например никелем. Если этого не делать сталь может окислиться на воздухе при сильной влажности или температуре, а также она хорошо реагирует с кислотами.

Также для защиты поверхности металла часто используют технику электрохимической или химической пассивации. Железо, например можно пассивировать с помощью концентрированной азотной или серной кислоты, однако разбавленные кислоты хорошо реагируют с металлом.

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

1) Составьте сокращённое ионное уравнение реакции между железом и азотной кислотой.

2) Как пассивация помогает улучшить химическую стойкость металла?


Прочитайте следующий текст и выполните задания 6-8.

Железо один из самых используемых металлов человеком. Его применяется как в тяжелой так и в легкой промышленности, например в строительстве, сфере обороны, в сельском хозяйстве и т. д.

Железо в промышленности получают из железной руды, которая в основном состоит из гематита (Fe 2 O 3). Для этого в доменную печь помещают руду, кокс (С), который переходит при нагревании с угарный газ и дополнительные добавки, которые позволяют избавляться от нежелательных примесей.

Полученное таким образом железо не часто используют в чистом виде, так как оно химически не устойчиво и обычно его в процессе производства легируют разными добавками, например никелем. Если этого не делать сталь может окислиться на воздухе при сильной влажности или температуре, а также она хорошо реагирует с кислотами.

Также для защиты поверхности металла часто используют технику электрохимической или химической пассивации. Железо, например можно пассивировать с помощью концентрированной азотной или серной кислоты, однако разбавленные кислоты хорошо реагируют с металлом.

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

Дана схема окислительно-восстановительной реакции:

1. Составьте электронный баланс этой реакции.

2. Укажите окислитель и восстановитель.

3. Расставьте коэффициенты в уравнении реакции.

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

Дана схема превращений: → → →

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения.

Решения заданий с развернутым ответом не проверяются автоматически.
На следующей странице вам будет предложено проверить их самостоятельно.

Установите соответствие между классом органических веществ и формулой его представителя: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

До конца XIX века все химические элементы казались постоянными и неделимыми. Не возникало вопроса о том, как можно преобразовать неизменяемые элементы. Но открытие радиоактивности перевернуло известный нам мир и проложило путь к открытию новых веществ.

Открытие радиоактивности

Честь открытия превращения элементов принадлежит французскому физику Антуану Беккерелю. Для одного химического опыта ему понадобились кристаллы сульфата уранил-калия. Он завернул вещество в черную бумагу и положил пакет возле фотопластинки. После проявления пленки ученый увидел на снимке очертания кристаллов уранила. Несмотря на плотный слой бумаги, они были хорошо различимы. Беккерель несколько раз повторял этот опыт, но результат оказывался тем же: очертания кристаллов, содержащих уран, четко просвечивались на фотографических пластинках.

Результаты открытия Беккерель обнародовал на очередном совещании, которое проводила Парижская академия наук. Его доклад начинался словами о «невидимой радиации». Так он описывал результаты своих экспериментов. После этого в обиход физиков и вошло понятие радиации.

Опыты Кюри

Результаты наблюдений Беккереля заинтересовали французских ученых Марию и Поля Кюри. Они справедливо посчитали, что радиоактивными свойствами мог обладать не только уран. Исследователи заметили, что остатки руды, из которых добывается это вещество, все еще обладают высокой радиоактивностью. Поиски элементов, отличающихся от исходных, привели к открытию вещества со свойствами, аналогичными урану. Новый радиоактивный элемент получил наименование полоний. Такое название Мария Кюри дала веществу в честь своей родины - Польши. Вслед за этим был открыт радий. Радиоактивный элемент оказался продуктом распада чистого урана. После этого в химии началась эра новых, ранее не встречающихся в природе химических веществ.

Элементы

Большая часть известных на сегодняшний день ядер химических элементов нестабильна. Со временем такие соединения самопроизвольно распадаются на иные элементы и различные мельчайшие частицы. Более тяжелый элемент-родитель в сообществе физиков получил название исходного материала. Продукты, образующиеся при разложении вещества, именуются дочерними элементами или продуктами распада. Сам процесс сопровождается выбросом различных радиоактивных частиц.

Изотопы

Нестабильность химических элементов можно объяснить существованием различных изотопов одного и того же вещества. Изотопы - это разновидности некоторых элементов периодической системы с одинаковыми свойствами, но с разным числом нейтронов в ядре. Очень многие рядовые химические вещества имеют хотя бы один изотоп. То, что эти элементы широко распространены и хорошо изучены, подтверждает, что они находятся в стабильном состоянии сколь угодно долго. Но каждый из этих «долгоживущих» элементов содержит изотопы. Ядра их ученые получают в процессе проводимых в лабораторных условиях реакций. Искусственный радиоактивный элемент, получаемый синтетическим путем, в стабильном состоянии долго существовать не может и со временем распадается. Процесс этот может идти тремя путями. По названию элементарных частиц, которые являются побочными продуктами термоядерной реакции, все три вида распада получили свои имена.

Альфа-распад

Радиоактивный химический элемент может преобразоваться по первой схеме распада. В этом случае из ядра вылетает альфа-частица, энергия которой достигает 6 млн эВ. При детальном изучении результатов реакции было установлено, что эта частица представляет собой атом гелия. Она уносит из ядра два протона, поэтому получившийся радиоактивный элемент будет иметь в периодической системе атомный номер на две позиции ниже, чем у вещества-родителя.

Бета-распад

Реакция бета-распада сопровождается излучением одного электрона из ядра. Появление этой частицы в атоме связано с распадом нейрона на электрон, протон и нейтрино. Поскольку электрон покидает ядро, радиоактивный химический элемент увеличивает свой атомный номер на одну единицу и становится тяжелее своего родителя.

Гамма-распад

При гамма-распаде ядро выделяет пучок фотонов с различной энергией. Эти лучи и принято называть гамма-излучением. При этом процессе радиоактивный элемент не видоизменяется. Он просто теряет свою энергию.

Сама по себе нестабильность, которой обладает тот или иной радиоактивный элемент, совершенно не означает, что при наличии некоторого количества изотопов наше вещество вдруг исчезнет, выделив при этом колоссальную энергию. В реальности распад ядра напоминает приготовление попкорна - хаотичное движение зерен кукурузы на сковородке, причем совершенно неизвестно, какое из них раскроется первым. Закон реакции радиоактивного распада может гарантировать только то, что за определенный отрезок времени из ядра вылетит количество частиц, пропорциональное числу оставшихся в ядре нуклонов. На языке математики этот процесс может быть описан такой формулой:

Здесь на лицо пропорциональная зависимость числа нуклонов dN, покидающих ядро за период dt, от числа всех имеющихся в ядре нуклонов N. Коэффициент λ представляет собой константу радиоактивности распадающегося вещества.

Число нуклонов, оставшихся в ядре в момент времени t, описывается формулой:

N = N 0 e -λt ,

в которой N 0 - число нуклонов в ядре в начале наблюдения.

Например, радиоактивный элемент галоген с атомным номером 85 был открыт лишь в 1940 году. Период полураспада его довольно велик - 7,2 часа. Содержание радиоактивного галогена (астата) на всей планете не превышает одного грамма чистого вещества. Таким образом, за 3,1 часа количество его в природе должно, по идее, уменьшиться вдвое. Но постоянные процессы распада урана и тория дают начало новым и новым атомам астата, хотя и в очень маленьких дозах. Поэтому количество его в природе остается стабильным.

Период полураспада

Константа радиоактивности служит для того, чтобы с ее помощью можно было определить, насколько быстро распадется исследуемый элемент. Но для практических задач физики чаще используют величину, называемую периодом полураспада. Этот показатель сообщает, за какое время вещество потеряет ровно половину своих нуклонов. Для различных изотопов этот период варьируется от крохотных долей секунды до миллиардов лет.

Важно понимать, что время в этом уравнении не складывается, а умножается. Например, если за промежуток времени t вещество потеряло половину своих нуклонов, то за срок в 2t оно потеряет еще половину от оставшихся - то есть одну четвертую от первоначального количества нуклонов.

Возникновение радиоактивных элементов

Естественным образом радиоактивные вещества образуются в верхних слоях атмосферы Земли, в ионосфере. Под действием космического излучения газ на большой высоте претерпевает различные изменения, которые превращают стабильное вещество в радиоактивный элемент. Газ, наиболее распространенный в нашей атмосфере - N 2 , к примеру, из устойчивого изотопа азот-14 превращается в радиоактивный изотоп углерода-14.

В наше время гораздо чаще радиоактивный элемент возникает в цепи рукотворных реакций атомного деления. Так называют процессы, в которых ядро вещества-родителя распадается на два дочерних, а после - на четыре радиоактивных «внучатых» ядра. Классический пример - изотоп урана 238. Его период полураспада составляет 4,5 миллиарда лет. Практически столько же существует наша планета. После десяти этапов распада радиоактивный уран превращается в стабильный свинец 206. Искусственно полученный радиоактивный элемент по свои свойствам ничем не отличается от своего природного собрата.

Практическое значение радиоактивности

После Чернобыльской катастрофы многие всерьез заговорили о свертывании программ развития атомных электростанций. Но в бытовом плане радиоактивность приносит человечеству огромную пользу. Изучением возможностей ее практического применения занимается наука радиография. Например, радиоактивный фосфор вводится пациенту для получения полной картины костных переломов. Ядерная энергия служит также для выработки тепла и электроэнергии. Возможно, в дальнейшем нас ждут новые открытия и в этой удивительной области науки.

СИСТЕМАТИ3АЦИЯ, ОБОБЩЕНИЕ И УГЛУБЛЕНИЕ 3НАНИЙ ПО КУРСУ ХИМИИ

Глава II. Периодический закон и периодическая система Д.И. Менделеева на основе учения

о строении атома

Задачи к §§1-3 (стр. 70)

Вопрос № 1

Сравните формулировку периодического закона, данную Д.И. Менделеевым, с современной формулировкой. Объясните, почему потребовалось такое изменение формулировки.

Формулировка периодического закона, данная Д.И. Менделеевым, гласила: свойства химических элементов находятся в периодической зависимости от атомных масс этих элементов. Современная формулировка гласит: свойства химических элементов находятся в периодической зависимости от заряда ядра этих элементов. Такое уточнение потребовалось, поскольку к моменту установления Менделеевым периодического закона еще не было известно о строении атома. После выяснения строения атома и установления закономерностей размещения электронов по электронным уровням стало ясно, что периодическая повторяемость свойств элементов связана с повторяемостью строения электронных оболочек.

Вопрос № 2

Почему число элементов в периодах соответствует ряду чисел 2 – 8 – 18 – 32? Разъясните эту закономерность с учетом расположения электронов по энергетическим уровням.

Электроны в атоме могут занимать s-, p-, d- и f-орбитали. На одном электронном уровне может быть одна s-орбиталь, три р- орбитали, пять d-орбиталей, семь f-орбиталей. На одной орбитали

может находиться не более двух электронов. Таким образом, если заполнены только s-орбитали, на электронном уровне находится 2 электрона. Если заполнены s- и р-орбитали, на одном электронном уровне находится 2 + 6 = 8 электронов. Если заполнены s-, p- и d- орбитали, на электронном уровне находится 2 + 6 + 10 = 18 электронов. Наконец, если заполнены s-, p-, d-, и f-орбитали, на электронном уровне находится 2 + 6 + 10 + 14 = 32 электрона. Таким образом, число элементов в периодах соответствует максимально возможному числу электронов на электронном уровне.

Вопрос № 3

На основе теории строения атомов поясните, почему группы элементов разделены на главные и побочные.

В элементах главных подгрупп периодической системы элементов происходит заполнение электронами орбиталей внешнего электронного уровня. В элементах побочных подгрупп происходит заполнение электронами орбиталей предпоследнего электронного уровня.

Вопрос № 4

По каким признакам различают s-, p-, d- и f-моменты?

В атомах s-элементов происходит заполнение s-орбиталей, в атомах р-элементов заполняются р-орбитали, в атомах d-элементов

– d-орбитали и в атомах f-элементов – f-орбитали.

Вопрос № 5

Пользуясь таблицей периодической системы химических элементов Д.И. Менделеева, составьте схемы расположения электронов по орбиталям и энергетическим уровням в атомах элементов ванадия V, никеля Ni и мышьяка As. Какие из них относятся к р-элементам и какие – к d-элементам и почему?

Атом ванадия:

1s2 2s2 2p6 3s2 3p6 3d3 4s2

Атом никеля: 1s2 2s2 2p6 3s2 3p6 3d8 4s2

Атом мышьяка: 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p3

В атомах ванадия и никеля заполняется 3d-подуровень, поэтому их относят к d-элементам. В атоме мышьяка заполняется 4рподуровень, то есть мышьяк является р-элементом.

Вопрос № 6

Разъясните, почему химический знак водорода обычно помещают в главной подгруппе I группы и в главной подгруппе VII группы.

В атоме водорода один s-электрон на внешней (и единственной) электронной оболочке, как и у атомов щелочных металлов. Поэтому водород размещают в первой группе периодической системы. С другой стороны, для заполнения внешней электронной оболочки атому водорода не хватает одного электрона, как и атомам галогенов, поэтому водород помещают также в главную подгруппу VII группы периодической системы.

Вопрос № 7

На основе закономерностей размещения электронов по орбиталям поясните, почему лантаноиды и актиноиды обладают сходными химическими свойствами.

В атомах лантаноидов и актиноидов происходит заполнение третьего снаружи электронного уровня. Поскольку химические свойства главным образом зависят от электронов внешней оболочки, то лантаноиды и актиноиды очень похожи по свойствам.

Вопрос № 8

Назовите известные вам искусственно полученные элементы, укажите их место в таблице периодической системы химических элементов Д.И. Менделеева и начертите схемы, от-

ражающие расположение электронов по орбиталям в атомах этих элементов.

Не встречаются в природе и могут быть получены только искусственно технеций (№ 43), прометий (№ 61), астат (№ 85), франций (№ 87) и трансурановые элементы, то есть элементы находящиеся в периодической системе после урана (с номерами 93 и больше).

Электронные схемы технеция, прометия, астата и франция:

43 Тс 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d5 5s2

61 Pm 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f5 5s2 5p6 6s2

85 At 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5d10 6s2 6p5 87 Fr 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5d10 6s2 6p6 7s1

Электронная схема первого из трансурановых элементов – нептуния:

93Np

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5d10 5f4 6s2 6p6 6d1 7s2

Вопрос № 9

Объясните сущность понятия «валентность» с точки зрения современных представлений о строении атомов и образования химической связи.

Валентность равна числу химических связей, которые атом данного элемента может образовать с атомами других элементов. В образовании химических связей участвуют электроны внешнего электронного уровня. Валентность можно определить также как число электронов, которые атом данного химического элемента может предоставить для образования химических связей с атомами других элементов.

Вопрос № 10

Почему численное значение валентности не всегда совпадает с числом электронов на наружных энергетических уровнях?

Образование химических связей возможно при наличии в атоме неспаренных электронов. Во многих элементах не все электроны внешнего электронного уровня являются неспаренными.

Например, в атомах кислорода и серы по шесть электронов на внешнем уровне, но из них только два неспаренных:

16S ↓

Однако, в атоме серы на внешнем электронном уровне есть еще пустые 3d-орбитали, на которые могут переходить электроны с 3s- и 3р-орбиталей, в результате в атоме серы становится шесть неспаренных электронов:

16S ↓

Поэтому максимальная валентность серы равна шести, то есть совпадает с числом электронов на внешнем электронном уровне. В атоме кислорода на втором уровне нет d-орбиталей, поэтому нет возможности для распаривания электронов, и валентность кислорода не может быть больше двух, то есть не равна числу электронов на внешнем уровне.

Вопрос № 11

Почему максимальная валентность элементов 2-го периода не может превысить число 4?

В атомах элементов второго периода может быть не более 4 неспаренных электронов, так как на втором электронном уровне есть одна s-орбиталь и три р-орбитали. Валентность равна числу неспаренных электронов, поэтому валентность элементов второго периода не может быть больше 4.

Вопрос № 12

Составьте электронные схемы, отражающие валентность азота в азотной кислоте и валентность углерода и кислорода в оксиде углерода (II).

а) Молекула оксида углерода. Строение электронных оболочек атомов углерода и кислорода:

В молекуле оксида углерода две связи образованы за счет двух неспаренных электронов атома углерода и двух неспаренных электронов атома кислорода. У атома кислорода есть еще пара электронов на 2р-орбитали, а у атома углерода – свободная 2р-орби- таль. Пара электронов переходит от атома кислорода к атому углерода, образуют донорно-акцепторную связь. Электронную формулу оксида углерода (II) можно изобразить так:

(стрелочкой обозначена донорно-акцепторная связь).

б) Молекула азотной кислоты. Электронные схемы атомов водорода, кислорода и азота:

Атом водорода образует за счет единственного электрона связь с атомом кислорода. Второй электрон атома кислорода участвует в образовании связи с атомом азота:

У атома азота остается два неспаренных электрона, и он образует две связи со вторым атомом кислорода:

H O N O

У атома азота осталась еще электронная пара на 2s-орбитали.

В третьем атоме кислорода происходит спаривание электронов, и образуется свободная орбиталь:

Пара электронов от атома азота переходит на освободившуюся орбиталь атома кислорода и образуется донорно-акцепторная связь:

Вопрос № 13

Почему по современным представлениям понятие о валентности неприменимо к ионным соединениям?

Валентность равна числу образованных атомом связей и зависит от числа электронов на внешнем электронном уровне. Ионные соединения состоят из положительно и отрицательно заряженных ионов, которые удерживаются вместе силами электрического притяжения. В ионных соединениях число связей между ионами зави-

сит от строения кристаллической решетки, может быть различным и не связано с числом электронов на внешнем электронном уровне.

Вопрос № 14

Какие закономерности наблюдаются в изменении атомных радиусов в периодах слева направо и при переходе от одного периода к другому?

В периодах атомные радиусы уменьшаются слева направо. Это связано с тем, что заряд ядра увеличивается и электроны сильнее притягиваются к ядру, электронная оболочка как бы сжимается. В группах радиусы атомов увеличиваются сверху вниз, поскольку увеличивается число электронных оболочек.

Вопрос № 15

Вспомните формулировку периодического закона, данную Д.И. Менделеевым, и современную формулировку этого закона. На конкретных примерах подтвердите, что периодически изменяются не только свойства химических элементов, но и формы и свойства их соединений.

Формулировка периодического закона, данная Д.И. Менделеевым, гласила: свойства химических элементов находятся в периодической зависимости от атомных масс этих элементов. Современная формулировка гласит: свойства химических элементов находятся в периодической зависимости от заряда ядра этих элементов. Периодически изменяются также и свойства соединений химических элементов. Например, оксиды всех металлов главной подгруппы I группы (Li2 О, Na2 O, К2 О, Rb2 О, Cs2 O) проявляют основные свойства, а оксиды всех элементов главной подгруппы IV группы (СО2 , SiО2 , GeO2 SnO2 , PbO2 ) – кислотные свойства.

ν (SO2 ) =

M(SO2 )

Т.к. в реакции получаются SO2 и Н2 О, то в исходном веществе содержатся могут только S, Н и О. Тогда исходное вещество можно схематично изобразить формулой Sх Ну Оz . Тогда уравнение реакции запишется

x + y

В 0,02 моль воды содержится 0,02 2 = 0,04 моль атомов водорода. В 0,02 моль оксида серы содержится 0,02 моль атомов водорода. Вычислим массу водорода и серы в веществе:

m(Н) = n(Н) М(Н) = 0,04 моль 1 г/моль = 0,04 г.

m(S) = n(S) M(S) = 0,02 моль 32 г/моль = 0,64 г.

Масса серы и водорода равна 0,64 + 0,04 = 0,68 г, то есть равна массе вещества, значит в веществе не содержится других элементов, кроме серы и водорода. На 0,04 моль водорода приходится 0,02 моль серы, то есть на 2 атома водорода приходится 1 атом серы, простейшая формула вещества H2 S, это сероводород.

Ответ : сероводород H2 S.

3адача № 2

Через раствор, содержащий 10 г гидроксида натрия, пропустили 20 г сероводорода. Какая соль образовалась при этом? Определите ее массу и количество.

Возможно образование двух солей – сульфида натрия по уравнению (1) и гидросульфида натрия по уравнению (2).

2NaOH + H2 S = Na2 S + 2H2 O

NaOH + Н3 8 = NaHS + H2 O

Вычислим молярные массы гидроксида натрия и сероводорода:

M(NaOH) = 23 + 16 + 1 = 40 г/моль

M(H2 S) = 1 2 + 32 = 34 г/моль

Вычислим количество вещества гидроксида натрия и сероводорода:

ν (NaOH) =

ν (H2 S) =

m(H2 S)

M(H2 S)

По уравнению (2) 1 моль гидроксида натрия реагирует с 1 моль сероводорода, значит для реакции с 0,59 моль сероводорода нужно 0,59 моль гидроксида натрия, а по условию взяли только 0,25 моль. Следовательно, сероводород взят в избытке, и образуется гидросульфид натрия, расчет ведем по гидроксиду натрия. Из 1 моль гидроксида натрия по уравнению образуется 1 моль гидросульфида натрия, следовательно из 0,25 моль гидроксида натрия получится 0,25 моль гидросульфида натрия.

Вычислим молярную массу гидросульфида натрия:

M(NaHS) = 23 + 1 + 32 = 56 г/моль

Вычислим массу гидросульфида натрия:

m(NaHS) = ν (NaHS) M(NaHS) = 0,25 моль 56 г/моль = 14 г.

Ответ : получится 0,25 моль (14 г) гидросульфида натрия.

3адача № 3

Сколько оксида алюминия в граммах можно получить из 100 г кристаллогидрата хлорида алюминия АlCl3 6Н2 О?

Ограничения на существование атомных ядер есть и со стороны сверхтяжелых элементов. Элементы с Z > 92 в естественных условиях не обнаружены. Расчеты по жидкокапельной модели предсказывают исчезновение барьера деления для ядер с Z2/A ≈ 46 (примерно 112 элемент). В проблеме синтеза сверхтяжелых ядер следует выделить два круга вопросов.

  1. Какими свойствами должны обладать сверхтяжелые ядра? Будут ли существовать магические числа в этой области Z и N. Каковы основные каналы распада и периоды полураспада сверхтяжелых ядер?
  2. Какие реакции следует использовать для синтеза сверхтяжелых ядер, типы бомбардирующих ядер, ожидаемые величины сечений, ожидаемые энергии возбуждения компаунд-ядра и каналы снятия возбуждения?

Так как образование сверхтяжелых ядер происходит в результате полного слияния ядра мишени и налетающей частицы необходимо создание теоретических моделей, описывающих динамику процесса слияния двух сталкивающихся ядер в компаунд-ядро.
Проблема синтеза сверхтяжелых элементов тесно связана с тем фактом, что ядра с Z,N = 8, 20, 28, 50, 82, N = 126 (магические числа) обладают повышенной стабильностью по отношению к различным модам радиоактивного распада. Это явление объясняется в рамках оболочечной модели − магические числа соответствуют заполненным оболочкам. Естественно возникает вопрос о существовании следующих магических чисел по Z и N. В случае, если они существуют в области N-Z-диаграммы атомных ядер N > 150, Z > 101, должны наблюдаться сверхтяжелые ядра, имеющие повышенные периоды полураспада, т.е. должен существовать Остров Стабильности. В работе на основе расчетов, выполненных с использованием потенциала Вудса-Саксона с учетом спин-орбитального взаимодействия, было показано, что повышение стабильности ядер следует ожидать для ядра с Z = 114, то есть следующая заполненная протонная оболочка соответствует Z = 114, заполненная нейтронная оболочка соответствует числу N ~ 184. Замкнутые оболочки могут существенно увеличить высоту барьера деления и соответственно увеличить время жизни ядра. Таким образом в этой области ядер (Z = 114, N ~ 184) следует искать Остров Стабильности. Этот же результат был независимо получен в работе .
Ядра с Z = 101–109 были открыты до 1986 года и получили названия: 101 - Md (Menelevium), 102 - No (Nobelium), 103 - Lr (Lawrencium), 104 - Rf (Rutherfordium, 106 - Sg (Seaborgium), 107 - Ns (Nielsborium), 108 - Hs (Hassium), 109 - Mt (Meitnerium). Учитывая заслуги исследователей из Дубны в открытии большого числа изотопов тяжелых элементов (102-105), в 1997 году решением Генеральной Ассамблеи чистой и прикладной химии элементу с Z = 105 было присвоено имя Dubnium (Db). Этот элемент ранее назывался Ha (Hannium).


Рис. 12.3. Цепочки распадов изотопов Ds (Z = 110), Rg (Z = 111), Cn (Z = 112).

Новый этап в исследовании сверхтяжелых ядер начался в 1994 году, когда была существенно повышена эффективность регистрации и усовершенствована методика наблюдения сверхтяжелых ядер. Как результат были обнаружены изотопы Ds (Z = 110), Rg (Z = 111) и Cn (Z = 112) .
Для получения сверхтяжелых ядер использовались ускоренные пучки 50 Ti, 51 V, 58 Fe, 62 Ni, 64 Ni, 70 Zn и 82 Se. В качестве мишеней применялись изотопы 208 Pb и 209 Bi. Различные изотопы 110 элемента были синтезированы в Лаборатории ядерных реакций им. Г.Н. Флерова с помощью реакции 244 Pu(34 S,5n) 272 110 и в GSI (Дармштадт) в реакции 208 Pb(62 Ni,n) 269 110. Изотопы 269 Ds, 271 Ds, 272 Rg и 277 Cn регистрировались по их цепочкам распада (рис. 12.3).
Большую роль в получении сверхтяжелых элементов играют теоретические модели, с помощью которых рассчитываются ожидаемые характеристики химических элементов, реакции, в которых они могут образовываться.
На основе различных теоретических моделей были рассчитаны распадные характеристики сверхтяжелых ядер. Результаты одного из таких расчетов показаны на рис. 12.4. Приведены периоды полураспада четно-четных сверхтяжелых ядер относительно спонтанного деления (а), α-распада (б), β-распада (в) и для всех возможных процессов распада (г). Наиболее устойчивым ядром по отношению к спонтанному делению (рис. 12.4а) является ядро с Z = 114 и N = 184. Для него период полураспада по отношению к спонтанному делению ~10 16 лет. Для изотопов 114-го элемента, отличающихся от наиболее устойчивого на 6-8 нейтронов, периоды полураспада уменьшаются на
10-15 порядков. Периоды полураспада по отношению к α-распаду приведены на рис. 12.5б. Наиболее устойчивое ядро расположено в области Z = 114 и N = 184 (T 1/2 = 10 15 лет).
Стабильные по отношению к β-распаду ядра показаны на рис. 12.4в темными точками. На рис. 12.4г приведены полные периоды полураспада, которые для четно-четных ядер, расположенных внутри центрального контура, составляют ~10 5 лет. Таким образом, после учета всех типов распада оказывается, что ядра в окрестности Z = 110 и N = 184 образуют «остров стабильности». Ядро 294 110 имеет период полураспада около 10 9 лет. Отличие величины Z от предсказываемого оболочечной моделью магического числа 114 связано с конкуренцией между делением (относительно которого ядро с Z = 114 наиболее стабильно) и α-распадом (относительно которого устойчивы ядра с меньшими Z). У нечетно-четных и четно-нечетных ядер периоды полураспада по отношению к
α-распаду и спонтанному делению увеличиваются, а по отношению к β-распаду уменьшаются. Следует отметить, что приведенные оценки сильно зависят от параметров, использованных в расчетах, и могут рассматриваться лишь как указания на возможность существования сверхтяжелых ядер, имеющих времена жизни достаточно большие для их экспериментального обнаружения.


Рис. 12.4. Периоды полураспада, вычисленные для четно-четных сверхтяжелых ядер (числа обозначают периоды полураспада в годах):
а − относительно спонтанного деления, б − α-распада, в − е-захвата и β-распада, г − для всех процессов распада

Результаты еще одного расчета равновесной формы сверхтяжелых ядер и их периодов полураспада показаны на рис. 12.5, 12.6 . На рис. 12.5 показана зависимость энергии равновесной деформации от количества нейтронов и протонов для ядер с Z = 104-120. Энергия деформации определяется как разность энергий ядер в равновесной и сферической форме. Из этих данных видно, что в области Z = 114 и N = 184 должны располагаться ядра, имеющие в основном состоянии сферическую форму. Все обнаруженные на сегодня сверхтяжелые ядра (они показаны на рис. 12.5 темными ромбами) деформированы. Светлыми ромбами показаны ядра стабильные по отношению к β-распаду. Эти ядра должны распадаться в результате α-распада или деления. Основным каналом распада должен быть α-распад.

Периоды полураспада для четно-четных β-стабильных изотопов показаны на рис. 12.6. Согласно этим предсказаниям для большинства ядер ожидаются периоды полураспада гораздо большие, чем наблюдались для уже обнаруженных сверхтяжелых ядер (0.1–1 мс). Так например, для ядра 292 Ds предсказывается время жизни ~ 51 год.
Таким образом, согласно современным микроскопическим расчетам, стабильность сверхтяжелых ядер резко возрастает по мере приближения к магическому числу по нейтронам N = 184. До недавнего времени единственным изотопом элемента Z = 112 Cn (коперниций) был изотоп 277 Cn, имеющий период полураспада 0.24 мс. Более тяжелый изотоп 283 Cn был синтезирован в реакции холодного слияния 48 Ca + 238 U. Время облучения 25 дней. Полное число ионов 48 Ca на мишени − 3.5·10 18 . Зарегистрированы два случая, которые были интерпретированы как спонтанное деление образовавшегося изотопа 283 Cn. Для периода полураспада этого нового изотопа получена оценка T 1/2 = 81 c. Таким образом, видно, что увеличение числа нейтронов в изотопе 283 Cn по сравнению с изотопом 277 Cn на 6 единиц увеличивает время жизни на 5 порядков.
На рис. 12.7 взятом из работы экспериментально измеренные периоды α-распада сравниваются с результатами теоретических расчетов на основе модели жидкой капли без учета оболочечной структуры ядер. Видно, что для всех тяжелых ядер, за исключением лёгких изотопов урана, оболочечные эффекты увеличивают период полураспада на 2–5 порядков для большинства ядер. Ещё более сильное влияние оболочечная структура ядра оказывает на периоды полураспада относительно спонтанного деления. Увеличение периода полураспада для изотопов Pu составляет несколько порядков и увеличивается для изотопа 260 Sg.

Рис. 12.7. Экспериментально измеренные (● exp) и теоретически рассчитанные (○ Y) периоды полураспада трансурановых элементов на основе модели жидкой капли без учета оболочечной структуры ядра. Верхний рисунок − периоды полураспада для α-распада, нижний рисунок − периоды полураспада для спонтанного деления.

На рис. 12.8 показано измеренное время жизни изотопов сиборгия Sg (Z = 106) в сравнении с предсказаниями различных теоретических моделей . Обращает на себя внимание уменьшение почти на порядок времени жизни изотопа с N = 164 по сравнению с временем жизни изотопа с N = 162.
Наибольшего приближения к острову стабильности можно достичь в реакции 76 Ge + 208 Pb. Сверхтяжелое почти сферическое ядро может образоваться в реакции слияния с последующим испусканием γ-квантов или одного нейтрона. Согласно оценкам образующееся ядро 284 114 должно распадаться с испусканием α-частиц с периодом полураспада ~ 1 мс. Дополнительную информацию о заполненности оболочки в районе N = 162 можно получить, изучая α-распады ядер 271 Hs и 267 Sg. Для этих ядер предсказываются периоды полураспада 1 мин. и 1 час. Для ядер 263 Sg, 262 Bh, 205 Hs, 271,273 Ds ожидается проявление изомерии, причиной которой является заполнение подоболочек с j = 1/2 и j = 13/2 в районе N = 162 для ядер деформированных в основном состоянии.

На рис. 12.9 показаны экспериментально измеренные функции возбуждения реакции образования элементов Rf (Z = 104) и Hs (Z = 108)для реакций слияния налетающих ионов 50 Ti и 56 Fe с ядром-мишенью 208 Pb.
Образовавшееся компаунд-ядро охлаждается испусканием одного или двух нейтронов. Информация о функциях возбуждения реакций слияния тяжелых ионов особенно важны для получения сверхтяжелых ядер. В реакции слияния тяжелых ионов необходимо точно сбалансировать действие кулоновских сил и сил поверхностного натяжения. Если энергия налетающего иона недостаточно большая, то расстояние минимального сближения будет недостаточно для слияния двойной ядерной системы. Если энергия налетающей частицы будет слишком большой, то образовавшаяся в результате система будет иметь большую энергию возбуждения и с большой вероятностью произойдет развал ее на фрагменты. Эффективно слияние происходит в довольно узком диапазоне энергий сталкивающих частиц.


Рис.12.10. Схема потенциалов при слиянии 64 Ni и 208 Pb.

Реакции слияния с испусканием минимального числа нейтронов (1–2) представляют особый интерес, т.к. в синтезируемых сверхтяжелых ядрах желательно иметь максимально большое отношение N/Z. На рис. 12.10 показан потенциал слияния для ядер в реакции 64 Ni + 208 Pb → 272 Ds. Простейшие оценки показывают, что вероятность туннельного эффекта для слияния ядер составляет ~ 10 –21 , что существенно ниже наблюдаемой величины сечения. Это можно объяснить следующим образом. На расстоянии 14 Фм между центрами ядер первоначальная кинетическая энергия 236.2 МэВ полностью компенсируется кулоновским потенциалом. На этом расстоянии находятся в контакте только нуклоны, расположенные на поверхности ядра. Энергия этих нуклонов мала. Следовательно существует высокая вероятность того, что нуклоны или пары нуклонов покинут орбитали в одном ядре и переместятся на свободные состояния ядра-партнера. Передача нуклонов от налетающего ядра ядру-мишени особенно привлекательна в случае, когда в качестве мишени используется дважды магический изотоп свинца 208 Pb. В 208 Pb заполнены протонная подоболочка h 11/2 и нейтронные подоболочки h 9/2 и i 13/2 . Вначале передача протонов стимулируется силами притяжения протон-протон, а после заполнения подоболочки h 9/2 - силами притяжения протон-нейтрон. Аналогично нейтроны перемещаются в свободную подоболочку i 11/2 , притягиваясь нейтронами из уже заполненной подоболочки i 13/2 . Из-за энергии спаривания и больших орбитальных моментов передача пары нуклонов более вероятна, чем передача одного нуклона. После передачи двух протонов от 64 Ni 208 Pb кулоновский барьер уменьшается на 14 МэВ, что способствует более тесному контакту взаимодействующих ионов и продолжению процесса передачи нуклонов.
В работах [В.В. Волков. Ядерные реакции глубоконеупругих передач. М. Энергоиздат, 1982; В.В. Волков. Изв. АН СССР серия физич., 1986 т. 50 с. 1879] был детально исследован механизм реакции слияния. Показано, что уже на стадии захвата формируется двойная ядерная система после полной диссипации кинетической энергии налетающей частицы и нуклоны одного из ядер постепенно оболочка за оболочкой передаются другому ядру. То есть оболочечная структура ядер играет существенную роль в образовании компаунд-ядра. На основе этой модели удалось достаточно хорошо описать энергию возбуждения составных ядер и сечение образования элементов Z = 102–112 в реакциях холодного синтеза.
Таким образом, прогресс в синтезе трансурановых элементов Z = 107–112 был связан с «открытием» реакций холодного синтеза, в которых магические изотопы 208 Pb и 209 Bi облучались ионами с Z = 22–30. Образующееся в реакции холодного синтеза ядро нагрето слабо и охлаждается в результате испускания одного нейтрона. Так впервые были получены изотопы химических элементов с Z = 107–112. Эти химические элементы были получены в период 1978–1998 гг. в Германии на специально построенном ускорителе исследовательского центра GSI в Дармштадте. Однако, дальнейшее продвижение − к более тяжелым ядрам − таким методом оказывается затруднительным из-за роста величины потенциаль­ного барьера между сталкивающимися ядрами. Поэтому в Дубне был реали­зован другой метод получения сверхтяжелых ядер. В качестве мишеней использовались наиболее тяжелые изотопы искусственно полученных химических элементов плутония Pu (Z = 94), америция Am (Z = 95), кюрия Cm (Z = 96), берклия Bk (Z = 97) и калифорния Cf (Z = 98). В качестве ускоренных ионов был выбран изотоп кальция 48 Ca (Z = 20). Схематический вид сепаратора и детектора ядер отдачи показан на рис. 12.11.


Рис. 12.11. Схематический вид сепаратора ядер отдачи, на котором проводятся эксперименты по синтезу сверхтяжелых элементов в Дубне.

Магнитный сепаратор ядер отдачи уменьшает фон побочных продуктов реакции в 10 5 –10 7 раз. Регистрация продуктов реакции осуществлялась с помощью позиционно-чувствительного кремниевого детектора. Измерялись энергия, координаты и время пролета ядер отдачи. После остановки все последующие сигналы от регистрируемых частиц распада должны исходить из точки остановки имплантированного ядра. Созданная методика позволяла с высокой степенью надёжности (≈ 100%) установить связь между остановившимся в детекторе сверхтяжелым ядром и продуктами его распада. С помощью такой методики были надёжно идентифицированы сверхтяжелые элементы с
Z = 110–118 (табл. 12.2).
В таблице 12.2 приведены характеристики сверхтяжелых химических элементов с Z = 110–118: массовое число A, m − наличие изомерного состояния в изотопе с массовым числом A, спин-четность J P , энергия связи ядра E св, удельная энергия связи ε, энергии отделения нейтрона B n и протона B p , период полураспада T 1/2 и основные каналы распада.
Химические элементы Z > 112 пока не имеют названий и приводятся в принятых международных обозначениях.

Таблица 12.2

Характеристики сверхтяжелых химических элементов Z = 110–118

XX-A-m J P Масса
ядра,
MэВ
E св,
MэВ
ε,
MэВ
B n ,
MэВ
B p ,
MэВ
T 1/2 Моды распада
Z = 110 − дармштадтий
Ds-267 248787.19 1934.5 7.2 0.7 2.8 ас α ≈100%
Ds-268 0 + 249718.08 1943.2 7.3 8.7 1.3 100 ас α ≈
Ds-269 250650.86 1950.0 7.2 6.8 1.3 179 ас α 100%
Ds-270 0 + 251581.97 1958.4 7.3 8.5 0.10 мс α ≈100%, SF < 0.20%
Ds-270-m 251583.07 1957.3 7.2 6.0 мс α >70%, IT ≤ 30%
Ds-271 252514.72 1965.2 7.3 6.8 2.2 1.63 мс α ≈100%
Ds-271-m 252514.72 1965.2 7.3 69 мс IT?, α >0%
Ds-272 0 + 253446.46 1973.1 7.3 7.8 2.5 1 с SF
Ds-273 254380.32 1978.8 7.2 5.7 2.5 0.17 мс α ≈100%
Ds-274 0 + 255312.45 1986.2 7.2 7.4 3.0 2 с α?,
SF?
Ds-275 256246.44 1991.8 7.2 5.6 2.9 2 с α?
Ds-276 0 + 257178.73 1999.1 7.2 7.3 3.2 5 с SF?,
α?
Ds-277 258112.63 2004.7 7.2 5.7 3.1 5 с α?
Ds-278 0 + 259044.92 2012.0 7.2 7.3 10 с SF?,
α?
Ds-279 259978.62 2017.9 7.2 5.9 0.18 с SF ≈90%,
α ≈10%
Ds-281 261844.60 2031.0 7.2 9.6 с SF ≈100%
Z =111 − рентгений
Rg-272 253452.75 1965.5 7.2 0.2 3.8 мс α ≈100%
Rg-273 254384.34 1973.5 7.2 8.0 0.4 5 мс α?
Rg-274 255317.74 1979.6 7.2 6.2 0.9 6.4 мс α ≈100%
Rg-275 256249.53 1987.4 7.2 7.8 1.2 10 мс α?
Rg-276 257183.22 1993.3 7.2 5.9 1.5 100 мс SF?,
α?
Rg-277 258115.72 2000.4 7.2 7.1 1.3 1 с α?,
SF?
Rg-278 259049.11 2006.5 7.2 6.2 1.8 4.2 мс α ≈100%,
SF
Rg-279 259981.41 2013.8 7.2 7.3 1.8 0.17 с α ≈100%
Rg-280 260914.80 2020.0 7.2 6.2 2.1 3.6 с α ≈100%
Rg-281 261847.09 2027.2 7.2 7.3 1 м α?, SF?
Rg-282 262780.59 2033.3 7.2 6.1 2.3 4 м SF?, α?
Rg-283 263712.98 2040.5 7.2 7.2 10 м SF?, α?
Z = 112 − коперниций
Cn-277 258119.32 1995.5 7.2 2.2 0.69 мс α ≈100%
Cn-278 0 + 259051.20 2003.1 7.2 7.7 2.8 10 мс SF?, α?
Cn -279 259984.69 2009.2 7.2 6.1 2.7 0.1 с SF?, α?
Cn -280 0 + 260916.69 2016.8 7.2 7.6 3.0 1 с α?, SF?
Cn -282 0 + 262782.18 2030.4 7.2 3.2 0.50 мс SF ≈100%
Cn -283 263715.57 2036.6 7.2 6.2 3.3 4.0 с α ≥90%, SF ≤10%
Cn -284 0 + 264647.66 2044.1 7.2 7.5 3.6 101 мс SF ≈100%
Cn -285 265580.76 2050.5 7.2 6.5 34 с α ≈100%
Z = 113
Uut-278 0.24 мс α 100%
Uut-283 263719.46 2031.4 7.2 1.0 100 мс α 100%
Uut-284 264652.45 2038.0 7.2 6.6 1.4 0.48 с α ≈100%
Uut-285 265584.55 2045.5 7.2 7.5 1.4 2 м α?, SF?
Uut-286 266517.64 2051.9 7.2 6.5 1.4 5 м α?, SF?
Uut-287 267449.64 2059.5 7.2 7.6 20 м α?, SF?
Z = 114
Uuq-286 0 + 266520.33 2048.0 7.2 2.5 0.16 с SF ≈60%, α ≈40%
Uuq-287 267453.42 2054.4 7.2 6.5 2.5 0.51 с α ≈100%
Uuq-288 0 + 268385.02 2062.4 7.2 8.0 2.9 0.80 с α ≈100%
Uuq-289 269317.91 2069.1 7.2 6.7 2.7 с α ≈100%
Z = 115
Uup-287 267458.11 2048.4 7.1 0.5 32 мс α 100%
Uup-288 268390.81 2055.3 7.1 6.9 0.9 87 мс α 100%
Uup-289 269322.50 2063.2 7.1 7.9 0.8 10 с SF?, α?
Uup-290 270255.30 2070.0 7.1 6.8 0.9 10 с SF?, α?
Uup-291 271187.09 2077.7 7.1 7.8 1 м α?, SF?
Z = 116
Uuh-290 0 + 270258.98 2065.0 7.1 1.8 15 мс α ≈100%
Uuh-291 271191.78 2071.7 7.1 6.8 1.8 6.3 мс α 100%
Uuh-292 0 + 272123.07 2080.0 7.1 8.3 2.3 18 мс α ≈100%
Uuh-293 53 мс α ≈100%
Z = 117
Uus-291 271197.37 2064.9 7.1 -0.1 10 мс SF?, α?
Uus-292 272129.76 2072.0 7.1 7.2 0.3 50 мс SF?, α?
Z = 118
Uuo-294 0 + 1.8 мс α ≈100%

На рис. 12.12 показаны все известные наиболее тяжелые изотопы с Z = 110–118, полученные в реакциях синтеза с указанием экспериментально измеренного периода полураспада. Здесь же показано теоретически предсказанное положение острова стабильности (Z = 114, N = 184).


Рис. 12.12. N-Z-диаграмма элементов Z = 110–118.

Полученные результаты однозначно указывают на рост стабильности изотопов при приближении к дважды магическому ядру (Z = 114, N = 184). Добавление к ядрам с Z = 110 и 112 7–8 нейтронов увеличивает период полураспада от 2.8 ас (Ds-267) до ≈ 10 с (Ds-168, Ds 271). Период полураспада T 1/2 (272 Rg, 273 Rg) ≈ 4–5 мс увеличивается до T 1/2 (283 Rg) ≈ 10 мин. Наиболее тяжелые изотопы элементов Z = 110–112 содержат ≈ 170 нейтронов, что ещё далеко от магического числа N = 184. Все наиболее тяжелые изотопы с Z > 111 и N > 172 распадаются преимущественно в результате
α-распада, спонтанное деление – более редкий распад. Эти результаты находятся в хорошем согласии с теоретическими предсказаниями.
В Лаборатории ядерных реакций им. Г.Н. Флерова (Дубна) синтезирован элемент с Z = 114. Была использована реакция

Идентификация ядра 289 114 проводилась по цепочке α-распадов. Экспериментальная оценка периода полураспада изотопа 289 114 ~30 с. Полученный результат находится в хорошем согласии с ранее выполненными расчетами .
При синтезе 114 элемента в реакции 48 Cu + 244 Pu максимальный выход изотопов с Z = 114 наблюдался в канале с испарением трех нейтронов. При этом энергии возбуждения составного ядра 289 114 была 35 МэВ.
Теоретически предсказываемая последовательность распадов, происходящих с ядром 296 116, образующемся в реакции 248 Cm + 48 Ca → 296 116, приведена на рис.12.13


Рис. 12.13. Схема распада ядра 296 116.

Изотоп 296 116 охлаждается в результате испускания четырех нейтронов и превращается в изотоп 292 116, который далее с 5% -ой вероятностью в результате двух последовательных e-захватов превращается в изотоп 292 114. В результате α-распада (T 1/2 = 85 дней) изотоп 292 114 превращается в изотоп 288 112. Образование изотопа 288 112 происходит и по каналу

Конечное ядро 288 112, образующееся в результате обеих цепочек, имеет период полураспада около 1 часа и распадается в результате спонтанного деления. Примерно с 10%-ой вероятностью в результате α-распада изотопа 288 114 может образовываться изотоп 284 112. Приведенные выше периоды и каналы распада получены расчетным путем.
На рис. 12.14 приведена цепочка последовательных α-распадов изотопа 288 115, измеренная в экспериментах в Дубне. ER − энергия ядра отдачи, имплантированного в позиционно-чувствительный кремниевый детектор. Можно отметить хорошее совпадение в периодах полураспада и энергиях α-распадов в трёх экспериментах, что свидетельствует о надёжности метода идентификации сверхтяжелых элементов с помощью измерений спектров α-частиц.


Рис. 12.14. Цепочка последовательных α-распадов изотопа 288 115, измеренная в экспериментах в Дубне.

Самый тяжелый, полученный в лабораторных условиях элемент с Z = 118, был синтезирован в реакции

48 Ca + 249 Cf → 294 118 + 3n.

При энергии ионов вблизи кулоновского барьера наблюдалось три случая образования 118 элемента. Ядра 294 118 имплантировались в кремниевый детектор и наблюдалась цепочка последовательных α-распадов. Сечение образования 118 элемента составляло ~2 пикобарна. Период полураспада изотопа 293 118 равен 120 мс.
На рис. 12.15 показана теоретически рассчитанная цепочка последовательных α-распадов изотопа 293 118 и приведены периоды полураспада дочерних ядер, образующихся в результате α-распадов.


Рис. 12.15. Цепочка последовательных α-распадов изотопа 293 118.
Приведены средние времена жизни дочерних ядер, образующихся в результате α-распадов.

Анализируя различные возможности образования сверхтяжелых элементов в реакциях с тяжелыми ионами нужно учитывать следующие обстоятельства.

  1. Необходимо создать ядро с достаточно большим отношением числа нейтронов к числу протонов. Поэтому в качестве налетающей частицы надо выбирать тяжелые ионы, имеющие большое N/Z.
  2. Необходимо, чтобы образующееся компаунд-ядро имело малую энергию возбуждения и небольшую величину момента количества движения, так как в противном случае будет снижаться эффективная высота барьера деления.
  3. Необходимо, чтобы образующееся ядро имело форму близкую к сферической, так как даже небольшая деформация будет приводить к быстрому делению сверхтяжелого ядра.

Весьма перспективным методом получения сверхтяжелых ядер являются реакции типа 238 U + 238 U, 238 U + 248 Cm, 238 U + 249 Cf, 238 U + 254 Es. На рис. 12.16 приведены оценочные сечения образования трансурановых элементов при облучении ускоренными ионами 238 U мишеней из 248 Cm, 249 Cf и 254 Es. В этих реакциях уже получены первые результаты по сечениям образования элементов с Z > 100. Для увеличения выходов исследуемых реакций толщины мишеней выбирались таким образом, чтобы продукты реакции оставались в мишени. После облучения из мишени сепарировались отдельные химические элементы. В полученных образцах в течение нескольких месяцев регистрировались продукты α-распада и осколки деления. Данные, полученные с помощью ускоренных ионов урана, ясно указывают на увеличение выхода тяжелых трансурановых элементов по сравнению с более легкими бомбардирующими ионами. Этот факт чрезвычайно важен для решения проблемы синтеза сверхтяжелых ядер. Несмотря на трудности работы с соответствующими мишенями прогнозы продвижения к большим Z выглядят довольно оптимистично.


Рис. 12.16. Оценки сечений образования трансурановых элементов в реакциях 238 U с 248 Cm, 249 Cf и 254 Es

Продвижение в область сверхтяжелых ядер в последние годы оказалось ошеломляюще впечатляющим. Однако все попытки обнаружить Остров Стабильности пока не увенчались успехом. Поиск его интенсивно продолжается.
Оболочечная структура атомных ядер играет существенную роль в повышении стабильности сверхтяжелых ядер. Магические числа Z ≈ 114 и N ≈ 184, если они действительно существуют, могут привести к значительному повышению стабильности атомных ядер. Существенным является также то, что распад сверхтяжелых ядер будет происходить в результате α-распада, что важно для разработки экспериментальных методов детектирования и идентификации новых сверхтяжелых ядер.